
TADS

Version 2.1

Release Notes



TADS

The Text Adventure Development System

Version 2.1 Release Notes

Copyright c1993 by Michael J. Roberts. All Rights Reserved.

This documentation is the copyrighted property of Michael J. Roberts,
and may not be reproduced, in whole or in part, in any form or by any
means without the express written consent of the author. The author makes
no warranty of any kind with respect to this material, and disclaims all
warranties, including any implied warranties of merchantability or �tness
for any particular purpose.

High Energy Software, Perdition's Flames, Deep Space Drifter, Ditch Day
Drifter, TADS, and The Text Adventure Development System are trade-
marks of High Energy Software. Other product names used in this docu-
ment are trademarks or registered trademarks of their respective manufac-
turers.



Contents

Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1

New keywords: replace and modify : : : : : : : : : : : : : : 1

validDoList and validIoList : : : : : : : : : : : : : : : : : : : 4

dobjGen and iobjGen : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

New and improved built-in functions : : : : : : : : : : : : : : 7

Prompt customization : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

National Language Support : : : : : : : : : : : : : : : : : : : : : :11

Debugger Enhancements : : : : : : : : : : : : : : : : : : : : : : : : :14

File Format Compatibility : : : : : : : : : : : : : : : : : : : : : : : 16

New compiler options : : : : : : : : : : : : : : : : : : : : : : : : : : : :16

Improved error recovery : : : : : : : : : : : : : : : : : : : : : : : : : 17

adv.t changes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :18

DOS Color Customization : : : : : : : : : : : : : : : : : : : : : : : 19

Improved DOS MAKETRX Interface : : : : : : : : : : : : : : : : 20

Version 2.1 Release Notes iii



Introduction

Since the initial release of TADS version 2.0, we have �xed many prob-
lems that users have encountered, and have added many new features. We
haven't yet updated the TADS 2.0 Author's Manual to include documen-
tation of the new features, so we've prepared this set of release notes to
provide details on the additions and changes. Many of the features in
TADS version 2.1 were added in one of the earlier 2.0.x maintenance re-
leases, so you may have seen some of the information in these release notes
before.

The TADS 2.0 Author's Manual remains the primary documentation
for the system. We have tried to ensure that the changes we've made main-
tain compatibility with previous versions, which means that the information
in the Author's Manual is still mostly correct.

You may notice that the TADS version numbers displayed by the com-
piler, run-time, and debugger now have greater precision than in the past:
the version numbers now have four parts. The new fourth number indicates
the platform-speci�c release level. Platform-speci�c releases will be made
only to correct problems speci�c to a particular port of TADS, and will not
involve any changes in the language, features, or �le formats.

New keywords: replace and modify

Most game authors �nd that they can't avoid modifying adv.t in the course
of writing their games. While there's nothing intrinsically wrong with this,
it creates a problem when a new version of TADS is released: the game
author must either continue to use the old version of adv.t, which means
that any bug �xes or enhancements in the new version are not available, or
take the time to reconcile the author's changes to the �le with those made
in the standard version.

We can't do anything to help you with changes you've made to adv.t

prior to TADS version 2.1, but we may be able to prevent this from being a
problem in the future, thanks to the new replace and modify mechanism.

These new keywords allow you to make changes to objects that have
been previously de�ned. In other words, you can #include the standard
adv.t �le, and then make changes to the objects that the compiler has
already �nished compiling. Using these new keywords, you can make three
types of changes to previously-de�ned objects: you can replace a function
entirely, you can replace an object entirely, or you can add to or change the
methods already de�ned in an object.

Version 2.1 Release Notes 1



To replace a function that's already been de�ned, you simply preface
your replacement de�nition with the keyword replace. Following the key-
word replace is an otherwise normal function de�nition. The following
example replaces the scoreStatus function de�ned in adv.t with a new
function that customizes the status line score display.

#include <adv.t>

replace scoreStatus(points, turns)

{

setscore(cvtstr(pts) + ' points/' +

cvtstr(turns) + ' moves');

}

You can do exactly the same thing with objects. The following example
entirely replaces a verb de�ned in adv.t.

#include <adv.t>

/* we don't want 'buckle' -- replace fastenVerb */

replace fastenVerb: deepverb

verb = 'fasten'

sdesc = "fasten"

prepDefault = toPrep

ioAction(toPrep) = 'FastenTo'

;

Replacing an object entirely deletes the previous de�nition, including
all inheritance information and vocabulary. The only properties of a re-
placed object are those de�ned in the replacement; the original de�nition
is entirely discarded.

You can also modify an object, retaining its original de�nition (includ-
ing inheritance information, vocabulary, and properties). This allows you
to add new properties and vocabulary. You can also override properties,
simply by rede�ning them in the new de�nition.

The most common addition to an object from adv.t will probably be
new verb associations and added vocabulary.

modify pushVerb

verb = 'nudge'

ioAction(withPrep) = 'PushWith'

;

Note several things about this example. First, no superclass informa-
tion can be speci�ed in a modify statement; this is because the superclass

2 TADS: The Text Adventure Development System



list for the modi�ed object is the same as for the original object. Second,
note that vocabulary has been added. The additional vocabulary does not
replace the original vocabulary, but simply adds to the previously-de�ned
vocabulary. Further note that verb association pseudo-properties, such as
doAction and ioAction, are legal in a modify de�nition.

In a method that you rede�ne with modify, you can use pass and
inherited to refer to the replaced method in the original de�nition of the
object. In essence, using modify renames the original object, and then
creates a new object under the original name; the new object is created as
a subclass of the original (now unnamed) object. (There is no way to refer
to the original object directly; you can only refer to it indirectly through the
new replacement object.) Here's an example of using pass with modify.

class testClass: object

sdesc = "testClass"

;

testObj: testClass

sdesc =

{

"testObj...";

pass sdesc;

}

;

modify testObj

sdesc =

{

"modified testObj...";

pass sdesc;

}

;

Evaluating testObj.sdesc results in this display:

modified testObj...testObj...testClass

You can also replace a property entirely, erasing all traces of the orig-
inal de�nition of a property. The original de�nition is entirely forgotten|
using pass or inherited will refer to the method inherited by the original
object. To do this, use the replace keyword with the property itself. In
the example above, we could do this instead:

Version 2.1 Release Notes 3



modify testObj

replace sdesc =

{

"modified testObj...";

pass sdesc;

}

;

This would result in a di�erent display for testObj.sdesc:

modified testObj...testClass

The replace keyword before the property de�nition tells the compiler to
completely delete the previous de�nitions of the property. This allows you
to completely replace the property, and not merely override it, meaning
that pass and inherited will refer to the property actually inherited from
the superclass, and not the original de�nition of the property.

validDoList and validIoList

Some game authors encountered a performance problem when de�ning a
large number of objects with the same vocabulary. For example, if a game
had thirty or forty objects that all had the noun 'button', the system
took a long time to disambiguate a command such as \push button" even
when only one button was present. The reason for the delay is that the
run-time needed to run each object that matched the vocabulary through
the validDo or validIo method (as appropriate) for the verb; when forty
objects all had the same vocabulary, the parser had to call validDo forty
times, resulting in lengthy parsing delays.

To improve run-time performance in these situations, the parser now
calls a method in the verb object to reduce the number of objects that
must be considered. The new method is validDoList for direct objects,
and validIoList for indirect objects. This method returns a list of all of
the objects for which validDo or validIo (respectively) would return true.
The parser limits its checks to the objects returned by this new method; the
result is that only a few objects typically need to be checked with validDo

or validIo, eliminating the lengthy parsing delays for objects with common
names.

The objects returned by validDoList and validIoList are matched
against the vocabulary words used by the player, then tested through
validDo or validIo as always. Note that this means that validDoList

and validIoList can safely return too many objects|that is, they can

4 TADS: The Text Adventure Development System



return objects that would not actually pass validDo or validIo without
causing any problem. This eliminates the need to perform time-consuming
processing in these new routines, which further improves performance; the
new listing methods can simply return the list of everything that's even
remotely possible for the command.

The methods are called as follows:

verb.validDoList(actor, prep, iobj)

verb.validIoList(actor, prep, dobj)

The new adv.t provides suitable validDoList and validIoList methods
for the verbs it provides. Generally, these methods return the list of all
of the objects in the actor's inventory plus all their contents (recursively),
plus all of the objects in the actor's location and their contents (recursively),
plus all of the objects of class floatingItem in the game.

The new floatingItem class must be used with any object that uses
a method for its location property. The reason is that objects with non-
object location values are not part of any contents list, so they would
not be included in the lists returned by validDoList and validIoList.
These methods include the list of all floatingItem objects, however, so
declaring all such objects to be of class floatingItem ensures that they're
accessible when appropriate.

One other feature of validDoList and validIoList is that returning
nil is equivalent to returning a list of every object in the entire game. This
means that if a verb doesn't de�ne these methods at all, the behavior is
compatible with prior versions of TADS before the introduction of these
new methods. This is also useful for verbs such as \ask" and \tell" that
should allow any object (even inaccessible objects) to be mentioned.

dobjGen and iobjGen

Sometimes, you want to be able to de�ne an object that handles most or all
verbs in the same manner. For example, if you wanted to de�ne a distant
object, too far away to be manipulated, you'd like the response to almost
any verb (other than \look at") to be something like \It's too far away."
In previous versions, it has been very tedious to implement such objects,
because you had to provide a customized verDoVerb or other similar method
for practically every possible verb.

To make this type of object easier to implement, the parser will now call
a special method in the direct and indirect object early in the parser loop.
The new property for a direct object is dobjGen, and for an indirect object
it is iobjGen. These methods are called immediately after the roomAction

Version 2.1 Release Notes 5



method, and just before the �rst verIoVerb or verDoVerb method. These
methods are called with these parameters:

dobj.dobjGen(actor, verb, iobj, prep)

iobj.iobjGen(actor, verb, dobj, prep)

Any parameters that aren't meaningful for the command (for example, prep
and iobj for a command with no indirect object) will be passed as nil.

After calling these methods, the parser will proceed to the verIoVerb

or verDoVerb method as normal. These methods should use exit if they
want to stop the command without any further processing.

In certain cases, the parser does not call dobjGen or iobjGen. These
methods will be called only when they e�ectively override the actual verb
handler for the object|that is, when the verb handler is inherited, not

de�ned directly in the object de�ning dobjGen or iobjGen (or by a subclass
of that object). This allows you to exclude verbs from the general handling
of dobjGen and iobjGen, simply by including speci�c handlers for those
verbs in the object de�ning the general handler.

dobjGen and iobjGen make it very easy to de�ne a distant object or
a similar type of object. In the example below, every verb except for \look
at" will respond with the message \It's too far away," because dobjGen

or iobjGen will be called prior to any other processing on the verb. The
reason that \look at" is not caught be dobjGen is that verDoInspect is
de�ned in the object|this e�ectively overrides dobjGen. Any verDoVerb

methods de�ned by subclasses of distantItem would have the same e�ect
for those subclasses.

class distantItem: item

dobjGen(actor, verb, iobj, prep) =

{

"It's too far away.";

exit;

}

iobjGen(actor, verb, dobj, prep) =

{

self.dobjGen(actor, verb, dobj, prep);

}

verDoInspect(actor) =

{

pass verDoInspect;

}

;

6 TADS: The Text Adventure Development System



New and improved built-in functions

Several new built-in functions have been added, and a few of the existing
functions have been enhanced to provide additional features.

getfuse(funcptr, parm): This function lets you determine if the indicated
fuse is still active, and if so, how many turns are left until it is activated.
If the fuse is not active (either it has already �red, or it has been removed
with a call to remfuse), this function returns nil. Otherwise, it returns
the number of turns before the fuse is activated.

getfuse(obj, &msg): This form of getfuse lets you check on a fuse set
with the notify function. If the fuse has already been �red, or has been
removed with unnotify, this function returns nil. Otherwise, it returns
the number of turns before the fuse is activated.

gettime(): Returns the current system clock time. The time is returned
as a list of numeric values for easy processing.

[1] year calendar year (e.g., 1992)
[2] month month number (1 for January, 2 for February, etc.)
[3] day day of the month
[4] weekday day of the week (1 for Sunday, 2 for Monday, etc.)
[5] yearday day of the year (1 for January 1)
[6] hour hour of the day on 24-hour clock (midnight is 0)
[7] minute minute within the hour (0 to 59)
[8] second second within the minute (0 to 59)
[9] elapsed seconds since January 1, 1970, 00:00:00 GMT

inputkey(): Reads a single keystroke from the keyboard, and returns a
string consisting of the character read. inputkey() takes no arguments.
When called, the function �rst ushes any pending output text, then pauses
the game until the player hits a key. Once a key is hit, a string contain-
ing the character is returned. Note that this function does not provide a
portable mechanism for reading non-standardized keys, such as cursor ar-
row keys and function keys. If the user uses a non-standard key, the return
value is the representation of the key used by the computer being used.
To ensure portability, you should use inputkey() only with standardized
keys (alphabetic, numeric, and punctuation keys). Note that you will en-
counter no portability problems if you simply ignore the return value and
use inputkey only to pause and wait for a key.

Version 2.1 Release Notes 7



intersect(list1, list2): Returns the intersection of two lists|that is, the
list of items in both of the two lists provided as arguments. For example:

intersect([1 2 3 4 5 6], [2 4 6 8 10])

yields:

[2 4 6]

Note that the behavior for lists with repeated items is not fully de�ned
with respect to the number of each repeated item that will appear in the
result list. In the current implementation, the number of repeated items
that is present in the shorter of the two source lists will be the number
that appears in the result list; however, this behavior may change in future
versions.

objwords(num): Provides a list of the actual words the user typed to refer
to an object used in the current command. The argument num speci�es
which object you're interested in: 1 for the direct object, or 2 for the
indirect object. The return value is a list of strings; the strings are the
words used in the command (converted to lower case, stripped of any spaces
or punctuation). If a special word such as \it," \them," or \all" was used
to specify the object, the list will have a single element, which is the special
word used.

If the player types \take all," then objwords(1) will return ['all']

and objwords(2) will return [].
If the player types \put all in red box," then objwords(1) will return

['all'] and objwords(2) will return ['red' 'box'].

If multiple direct objects are used, the function will return the current
object's words only. For example, if the player types \put blue folder and
green book in red box," objwords(1)will return ['blue' 'folder']while
the �rst direct object is being processed, and ['green' 'book'] while the
second object is being processed.

This function could potentially be useful in such cases as \ask actor
about object," because it allows you determine much more precisely what
the player is asking about than would otherwise be possible.

outhide(ag): Turns hidden output on or o�, simulating the way the
parser disambiguates objects. The parameter ag is either true or nil.
When you call outhide(true), the system starts hiding output. Subse-
quent output is suppressed|it is not seen by the player. When you call
outhide(nil), the system stops hiding output|subsequent output is once
again displayed. outhide(nil) also returns a value indicating whether any
(suppressed) output was generated since the call to outhide(true), which

8 TADS: The Text Adventure Development System



allows you to determine whether any output would have resulted from the
calls made between outhide(true) and outhide(nil).

This is the same mechanism used by the parser during disambiguation,
so it should not be called by a verDoVerb or verIoVerb method. This
function is provided to allow you to make calls to verDoVerb and verIoVerb

to determine if they will allow a particular verb with an object.

There is no way to recover the text generated while output is being
hidden. The only information available is whether any text was generated.

restart(funcptr, param): This new form of restart() allows you to spec-
ify a function to be called after restarting the game, but before the init()
function is invoked. This new feature has been added because it would
otherwise be impossible to pass any information across a restart opera-
tion: the restart() function does not return, and all game state is reset
to its initial state by restart(). You can use this function if you want a
restarted game to have di�erent startup behavior than the game has when
it's �rst started. Note that adv.t passes a pointer to the initRestart

function (de�ned in adv.t when it invokes restart() in response to a
\restart" command; the adv.t implementation of initRestart() simply
sets the ag global.restarting to true to indicate that the game is being
restarted rather than �rst entered.

The param value is simply passed as the parameter to the function
to be called; this allows you to pass information through the reset. For
example, if you start the game with a questionnaire asking the player's
name, sex, and age, you could pass a list containing the player's responses
to your restart function, and have the restart function store the informa-
tion without making the player answer the questionnaire again. The call to
restart() in adv.t uses global.initRestartParam as the parameter for
the initRestart() function; so, if you provide your own version of ini-
tRestart() that makes use of the parameter information, you can simply
store the necessary information in global.initRestartParam to ensure
that it's passed to your function at the appropriate time.

restore(nil): This special new form of the restore() function allows you
to choose the time during startup that the player's saved game is restored
when the player started your game with a saved game already speci�ed.
When you call restore(nil), the system checks to see if a saved game was
speci�ed by the player at startup, and if so, immediately restores the game
and returns nil. If no game was speci�ed, the function returns true.

Currently, it is possible for a player to start a game in this manner
only on the Macintosh, but the new restore() functionality will work
correctly on all platforms. On the Macintosh, the operating system allows

Version 2.1 Release Notes 9



an application to be started by opening one of the application's documents
from the desktop; the application is started, and informed that the user
wishes to open the speci�ed �le. Saved game �les on the Macintosh are
associated with the game executable that created them in such a way that
the game is executed when a saved game is opened. This is simply a
convenience feature on the Macintosh that allows a player to run a game
and restore a saved position in a single operation.

You can use restore(nil) in your init function to choose the point at
which the saved game is restored. If your game has extensive introductory
text, you could call restore(nil) (and return if the function returns nil)
prior to displaying the introductory text, since the player has presumably
already seen it anyway.

The reason that the system doesn't restore the saved game prior to
calling your init function is that you may want parts of your init function
to be invoked regardless of whether a game is going to be restored or not.
For example, you may wish to display your copyright message, or ask a
question for copy protection, every time the game starts, even when a saved
game is going to be restored.

If you do not make a call to restore(nil) in your init function, the
system will automatically restore the saved game speci�ed by the player at
startup immediately after your init function returns. Hence, omitting the
call to restore(nil) does no harm; it merely delays the restore.

rundaemons(): Runs all of the daemons. The function runs daemons set
both with setdaemon() and notify(). This function returns no value.

runfuses(): Runs all expired fuses, if any. Returns true if any fuses
expired, nil otherwise. This function runs fuses set both with setfuse()

and notify().

setit(nil): You can now use nil as the argument to setit(). This
prevents the player from using \it" in subsequent commands.

setit(obj, num): You can now specify which pronoun you want to set.
The new optional parameter num speci�es the pronoun: 1 for \him" and
2 for \her." When num is not speci�ed, setit() sets \it" as usual. Note
that nil can be used for the obj argument to clear \him" or \her."

setit(list): You can now set \them" directly, simply by passing a list of
objects (rather than a single object) to setit(). Calling setit() with a
list clears \it."

10 TADS: The Text Adventure Development System



Prompt customization

You can now customize the appearance of the command prompt. If you
provide a function named commandPrompt, the system will call this function
rather than displaying its usual > prompt. The function is called with a
single argument, a number, which indicates what type of prompt should be
displayed.

The possible values of the prompt type parameter are:

0 normal command
1 command after an invalid word (allowing \oops" to be used)
2 disambiguation (after \which obj do you mean: : :")
3 command after askdo (after \what do you want to verb?")
4 command after askio

Note that the default prompt is the same in every case; the reason that
commandPrompt receives the information on the type of prompt is that you
may want to use a custom prompt that would not be appropriate in all
cases.

This function has no return value. If the function is de�ned by your
game, no default prompt is ever displayed regardless of whether your com-
mandPrompt displays anything or not. So, if you provide this function at
all, it must handle all cases. Note also that the blank line that the system
displays before each prompt is part of the default prompt, and therefore is
not displayed if a user commandPrompt function is de�ned. If you want to
write a version of this function that emulates the default prompt, it would
look like this:

commandPrompt: function(arg)

{

"\b>";

}

National Language Support

We've made several enhancements to the system to better support non-
English character sets. The most basic improvement is that the system
should now be fully \8-bit clean," which means that extended 8-bit charac-
ter sets (which use character codes above 127) should work just like normal
ASCII characters in source code, displayed text, vocabulary words, and

Version 2.1 Release Notes 11



player commands. Note that extended characters used in player commands
are treated the same as alphabetic characters; no provision has been made
for extended punctuation codes, so players will still have to use the standard
ASCII punctuation characters in their commands.

We have also made it possible to use 16-bit characters in displayed
text. For the most part, this has always been possible, because the display
of 16-characters is done by the operating system or video device. However,
one problem that some people encountered is that certain 16-bit character
sets include the code for the backslash as one of the two bytes of certain
characters; this created a problem, because the TADS output formatter
interpreted the backslash byte and the following byte as a formatting code
sequence. To address this problem, we've added a new code sequence to
the output formatter: \- (a backslash followed by a hyphen). This se-
quence tells the formatter to pass the following two bytes as-is, without
any interpretation. If you wish to display a 16-bit character that contains
a backslash as one of its bytes, simply pre�x the 16-bit character with the
\- sequence; this will prevent the formatter from interpreting either of the
bytes of your 16-bit character.

In addition, we have expanded the functionality previously provided by
the parseError function. Some users have found that way that parseError
was used to construct certain messages did not provide enough information
to allow proper translation into non-English languages. To improve trans-
latability of the parser messages, we have added several new functions that
are similar to parseError. As with the other optional user-provided func-
tions, the system will use its old default behavior if these functions are not
provided. The functions are independent, so you can provide or omit them
in any combination.

The new function parseError2 is called to generate the default parser
message stating that the verb attempted isn't accepted by the objects in-
volved; this happens when either the indirect object doesn't de�ne an ap-
propriate verIoVerb method, or the direct object doesn't de�ne an appro-
priate verDoVerb method. The parseError2 function receives four argu-
ments: the verb object, the direct object, the preposition object, and the
indirect object; however, only one of the direct or indirect object will be
non-nil. If the indirect object is nil, the preposition will be nil as well.
The verb will never be nil. Note that the preposition may be nil even
when the indirect object is not, in which case you should assume that the
preposition is \to." The function below implements the default behavior
that the system uses when parseError2 is not de�ned by your game.

12 TADS: The Text Adventure Development System



parseError2: function(v, d, p, i)

{

"I don't know how to << v.sdesc >> ";

if (d)

"<< d.thedesc >>.";

else

"anything << p ? p.sdesc : "to"

>> << i.thedesc >>.";

}

The parseDefault function is called when the parser is assuming a
default object. This function receives two arguments: the object being
defaulted, and the preposition object. If a default direct object is being
assumed, the preposition will be nil; if an indirect object is being defaulted,
the preposition argument will be the preposition object associated with the
preposition in the player's command. The implementation below provides
the default behavior.

parseDefault: function(obj, prp)

{

"(";

if (prp) "<< prp.sdesc >> ";

obj.thedesc; ")";

}

The parseDisambig function is called when objects need to be dis-
ambiguated. This function should generate an appropriate question to ask
the player which of several objects is intended. The function receives two
arguments: the string that the user typed that is in need of disambigua-
tion, and a list of objects that match the string. The implementation below
emulates the parser's default behavior.

parseDisambig: function(str, lst)

{

local i, tot, cnt;

"Which << str >> do you mean, ";

for (i := 1, cnt := length(lst) ; i <= cnt ; ++i)

{

lst[i].thedesc;

if (i < cnt) ", ";

if (i+1 = cnt) "or ";

}

"?";

}

Version 2.1 Release Notes 13



The parseAskobj function is called when the parser needs to ask the
player for a direct or indirect object to complete a command. For exam-
ple, if the player types \take," and several objects are present that could
be taken, the parser must ask the player what to take. The parseAskobj

function can be called with either one or two arguments, so it should be
declared using the variable argument list notation. When the parser wants
to ask for a direct object, parseAskobj will be called with only one argu-
ment: the verb object. When the parser is asking for an indirect object,
the function will be called with two arguments: the verb object, and the
preposition object. Note that the preposition could be nil, in which case
you should assume that the preposition is toPrep. The example below
implements the parser's default behavior.

parseAskobj: function(v, ...)

{

"What do you want to <<v.sdesc>>";

if (argcount = 2)

{

local p := getarg(2);

" it << p ? p.sdesc : "to" >>";

}

"?";

}

Debugger Enhancements

The debugger has a new set of commands that allows you to capture a log
of all method and function calls, and then inspect the log. This feature
can help you determine the exact sequence of calls that TADS itself makes
into your game, and also lets you see how your game and lower-level classes
(such as those from adv.t) interact. Four new commands have been added
to support this new feature; these are also accessible from the \Execution"
menu on the Macintosh.

c+ Turn on call logging. Any previous call log is cleared, and all subse-
quent method and function calls and returns will be added to the new
call log.

c- Turn o� call logging.

cc Clear current call log.

c Show current call log. All function and method calls after the most re-
cent c+ (up until the current time or the most recent c-) are displayed.

14 TADS: The Text Adventure Development System



The reason that commands are provided to turn call logging on and
o� is that the logging process can slow down your game's execution sub-
stantially, because the system must do extra work every time a function or
method is entered and exited. You should enable call logging at the point
you're about to execute a command that you want to trace through its
execution, then turn it o� when you're �nished with the command.

Note that the call log is limited in capacity. If the log becomes full, the
oldest information is discarded to make room for the new information. If
you leave call logging activated for an extended period of time, information
toward the beginning of the log may be lost.

The lines of text displayed in the call log will be indented to show
nesting. The functions and methods called directly by TADS will not be
indented at all; anything called by these functions and methods will be
indented one space, and so on. If a function or method has a return value,
it will be indicated in the log (pre�xed by =>) at the point when the function
or method returns. Each call will show the object and method or function
name involved, along with the arguments; the format is the same as in the
stack trace.

In addition, the debugger has several small improvements:

� The debugger will get control when a run-time error occurs. The error
message will be displayed, and execution will be suspended at the line
where the error occurred. When you resume execution, the current
command will be aborted (as though an abort statement had been
executed).

� It is now possible to break out of an in�nite loop in your game. Hit
Ctrl-Break on a DOS machine, and Command-period on a Macintosh,
if your game goes into an in�nite loop. Control will return to the
debugger.

� The debugger will now stop at a breakpoint in a method inherited by
an object. For example, if you set a breakpoint at room.lookAround,
execution will stop any time a subclass of room executes the inherited
lookAroundmethod. Of course, if a subclass overrides the lookAround
method, execution will not stop at room.lookAround.

� The run-time memory requirements have been reduced, which should
allow larger games to be debugged on smaller machines (such as DOS
machines) without the out-of-memory condition some people have ex-
perienced.

Version 2.1 Release Notes 15



File Format Compatibility

Version 2.1 of TADS uses a slightly di�erent game �le format than previous
versions. The new format will not be acceptable to older versions of the
run-time, although the new run-time is able to read .GAM �les produced by
older versions of the compiler.

The version 2.1 compiler generates .GAM �les with format \B"; prior
versions generated format \A." The version 2.1 run-time is able to read
�les in either format; prior versions can read only \A."

If for some reason you wish to generate a .GAM �le that can be read
by an older version of the run-time, the compiler has a new option, -fva
(Format Version \A") which generates .GAM �les in the older format. Unless
you have a speci�c need to generate the older format, we recommend using
the newer format (which the compiler will use by default). Another switch,
-fvb, is provided to tell the compiler explicitly to use format \B"; and -fv*

tells the compiler to use the most recent format (currently \B").
Note that some incompatible �le format changes have been made in

past versions in such a way that the run-time is unable to detect the in-
compatibility. It is therefore not always safe to mix di�erent versions of the
compiler and run-time with versions prior to 2.1.

One of the changes to the game �le format makes the �les much more
compressible with archiving and compression utilities. The .ZIP and .SIT

�les that you make from your .GAM �les should now be much smaller.

New compiler options

Several new compiler options have been added. Macintosh users will �nd
new menu choices that provide access to these options.

-v level Set warning verbosity level. The default level is 0 (minimum
verbosity; suppresses certain warnings which are either purely
informational or generally do not indicate an actual problem).
Other levels currently available are 1 (suppress purely infor-
mation messages, but display warnings even when they gen-
erally do not indicate a problem), and 2 (maximum verbosity;
displays all messages).

-fv type The type can be a for format \A" (used by TADS versions
prior to 2.1), b for format \B" (used by version 2.1.0), or * for
the most recent version. The default is -fv*, which currently
selects format \B." Unless you have some speci�c reason for

16 TADS: The Text Adventure Development System



using an older �le format, you should use the most recent
format (-fv*).

-e �le Log errors to �le. All error messages generated during com-
pilation will be saved to the indicated �le; the messages will
also be displayed on your screen as usual. The �le will be
created if it doesn't exist, or overwritten with the new error
log if it already exists.

Improved error recovery

Several improvements have been made to the compiler's error reporting and
recovery mechanism. The changes are intended to make it easier for you
to track down syntax and other errors in your source based on the error
information generated by the compiler.

� New logic has been added to help you track down unterminated strings.
When the compiler encounters a semicolon or a right brace (\}") in
the �rst column of a line while inside a string (either double-quoted
or single-quoted), it will generate a warning message that you have a
possible unterminated string. This is purely a guess by the compiler,
but if you are careful to format your code using the same convention
as adv.t, in which every function ends with a right brace on a line
by itself, and every object ends with a semicolon on a line by itself
(without any spaces preceding it), the compiler will be able to �nd your
unterminated strings almost every time. Note that the unterminated
string will often not be the last string, but this warning will at least
isolate the object or function where the string is coded.

� The compiler will now generate an error message if you attempt to
use self in a function. This has always been illegal, but previous
versions of the compiler did not detect the error, so the problem was
not detected until the code was actually executed.

� The warning messages that the compiler generates for optional objects
and functions (such as parseError and commandPrompt) are now sup-
pressed at warning verbosity levels less than 2. Many users found these
warnings confusing or annoying, and they almost never actually indi-
cated a problem in your game, so they are no longer generated unless
you speci�cally ask for them.

� The warning message for multiple inclusions of the same �le is now
suppressed at verbosity levels less than 1. This message is almost

Version 2.1 Release Notes 17



always spurious if you use precompiled headers, because it is generated
for every header that you precompiled. You will no longer see this
warning unless you speci�cally ask for it by setting a higher warning
verbosity level.

adv.t changes

Several improvements have been made to adv.t. Most are corrections, but
some functional improvements have been made, and a few new items have
been added.

� A new class, distantItem, has been added. This class is essentially the
same as a fixeditem, except that it's intended to be used for objects
that are not actually part of a room, but are visible from the room.
For example, the player might be able to see a distant mountain from
a certain location, even though the player can't do anything to the
mountain (except look at it). A distantItem object can be inspected,
but any other attempts will receive the response \It's too far away."

� A new function, scoreStatus(points, turns), has been added, which
simply calls setscore() with the same arguments. All other calls to
setscore() in adv.t have been replaced by calls to scoreStatus(),
which makes it easy to provide a new scoring format simply by us-
ing the replace keyword to substitute your own implementation of
scoreStatus().

� Two new properties have been added to the nestedroom class: status-
Prep, which displays an appropriate preposition for status line displays
while the player is in the nested room; and outOfPrep, which displays
the correct preposition when leaving the nested room. The default val-
ues are statusPrep = "in" and outOfPrep = "out of". The class
beditem provides default values of "on" and "out of" instead. If
you're de�ning new subclasses of nestedroom, you can override these
properties to provide the most appropriate messages for the subclasses.

� The fixeditem class has been corrected so that a fixeditem cannot
be thrown at anything.

� The follower class's actorActionmethod now appropriately executes
an exit statement. In addition, the follower class now uses dobjGen
and iobjGen to provide more sensible responses to most verbs.

� The clothingItem class has been modi�ed so that \get out of" is
equivalent to \take o�."

18 TADS: The Text Adventure Development System



� The various verbs which use vocabulary including \look" plus a prepo-
sition have been modi�ed to allow \l" in place of \look"; this applies to
several verbs, including \look at," \look on," \look in," \look under,"
\look around," and \look through."

� The doDefault method of takeVerb has been corrected so that it
doesn't return the contents of a closed object. In previous versions of
adv.t, \take all from object" would succeed even when the object was
closed.

� The vehicle class has been corrected so that the player cannot gener-
ally manipulate the vehicle while occupying the vehicle. For example,
the player cannot now take a vehicle or put it anywhere while inside
it.

� A new function, initRestart(param), has been added. This function
is used when adv.t calls the restart() built-in function to start the
game over from the beginning. The initRestart() in adv.t simply
sets the property global.restarting to true. Your game can inspect
this ag in the init() function (or elsewhere) to take a di�erent course
of action when restarting a game than when starting up for the �rst
time. The parameter is not used by the adv.t implementation of the
function.

� The \restart" verb passes a pointer to the initRestart function when
it calls the restart() built-in function. This causes initRestart()
to be invoked after the game has been restarted, but before init().
Note that the call to restart() passes global.initRestartParam

as the parameter to the initRestart function. If you replace ini-

tRestart() with your own function, and you need to pass some in-
formation to this function, simply store the necessary information in
global.initRestartParam at any time before restarting, and the in-
formation will automatically be passed to initRestart() when it's
invoked.

DOS Color Customization

The player can now customize the colors used by the runtime. A small
new program, TRCOLOR, is provided to set up the runtime screen colors.
The program is self-explanatory (it displays instructions on-screen, and its
operations are very simple). Type TRCOLOR at the DOS prompt to run the
program.

Once you've selected your color scheme, the TRCOLOR program will

Version 2.1 Release Notes 19



create a small �le called TRCOLOR.DAT in the current directory. The runtime
will read this �le at the start of subsequent game sessions.

Note that you can use multiple TRCOLOR.DAT �les, in the same way that
you can use multiple CONFIG.TC �les. The runtime looks for TRCOLOR.DAT
�rst in the current directory; if no such �le exists, the runtime uses the
TRCOLOR.DAT in the directory containing TR.EXE. This allows you to set up
a separate color scheme for each game you're playing, and in addition set
up a default color scheme for games with no color schemes of their own.

Improved DOS MAKETRX Interface

The user interface of the DOS MAKETRX program has been improved. For
compatibility with existing make�les, the old command line syntax is still
allowed; however, you can now omit most of the arguments, and MAKETRX

will use convenient new defaults.
First, you can now omit the extensions on all of the arguments. The

extension assumed for TR.EXE is \.EXE"; for the game �le it is \.GAM"; and
for the output (executable) �le it is \.EXE".

Second, you can now omit everything except the name of the game �le,
and the program will use reasonable defaults. If you omit the name of the
TR.EXE program, MAKETRX attempts to �nd TR.EXE in the same directory
as MAKETRX.EXE; so, if you simply keep all of your TADS executables in
a single directory, you won't need to specify the location of TR.EXE when
running MAKETRX. If you omit the name of the destination �le, MAKETRX will
use the same name as the game �le, with the extension replaced by \.EXE".

The command line formats for MAKETRX are:

maketrx mygame

Converts MYGAME.GAM into MYGAME.EXE, using the copy of TR.EXE that
resides in the same directory as MAKETRX.EXE.

maketrx mygame myprog

Converts MYGAME.GAM into MYPROG.EXE, using the copy of TR.EXE that
resides in the same directory as MAKETRX.EXE.

maketrx c:\tads2\tr.exe mygame myprog

Converts MYGAME.GAM into MYPROG.EXE using C:\TADS2\TR.EXE as the
runtime executable.

20 TADS: The Text Adventure Development System


