
The Wayback Machine - https://web.archive.org/web/20210419124201/http://www.firthworks.com/roger/infancy/index.html

Roger Firth's IF pages

InFancy -- using Inform objects
InFancy is another Inform overview site, like InfLight and InfAct. This time around, we're covering the basics of object usage, creation and naming,
then showing how to build on those basic concepts in more sophisticated ways.

The material is loosely organised as follows:

Object headers
The Object directive (or more specifically, its first line).

Object bodies
More on the Object directive; the with and has segments.

Properties and attributes
Objects have 'em: what's the difference?

Names
Puppy-training: teaching an object to respond to its own name.

Listings
What you see in room contents and player inventories.

Descriptions
"So, tell me about yourself..."

Classes
Make the mould once, then send in the clones.

Dynamic objects
Creating an object at run-time, before your very eyes.

The final game
Alright alright, 'game' is overstating it. The code wot we wrote.

Conventions

To clarify where the various example displays come from, a little colour-coding is used:

This is a sample of text in an Inform source file.

This is from a Z-machine interpreter at run-time.

Acknowledgements

Thanks to Neil Cerutti for good food, fine wine and general behind-the-scenes support and guidance (ok, I lied about the food and the wine). And of
course to Graham Nelson, ever-present in spirit (if not necessarily in body).

And with those few words, off we go!

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010509/http://www.firthworks.com/roger/infancy/header.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

Inform is an object-oriented language, meaning that you create your game by defining a whole series of self-contained objects. Try not to think too
deeply about what this means -- it turns out to be a natural and straightforward way of defining a world in which your player can roam through
'rooms' and interact with 'things'. Once you've got over the hurdle of creating your first handful of objects, you'll quickly become comfortable with the
concept (though admittedly the details take longer to master). Trust me: it's worth persisting. To start with, we'll explain the organisation of an
object.

"Object" directive

The basic definition of an Inform object begins with the compile-time directive Object and ends with a semicolon (;). (On a later page we'll see that
an object definition can also begin with the name of an object class, but for now the Object directive will do nicely.) As with all directives, it's
conventional to capitalise the first letter of Object; this helps us to remember that directives control what happens during compilation, whereas
statements (which we don't capitalise) control what happens when the game runs.

Object ... ;

The content of an object definition -- what goes between the Object and the ; -- can vary from trivially simple to extremely complex, so we'll creep
up on it bit by bit. The first useful realisation is that we can divide the definition into two parts: the header (its first line), and the body (all the
remaining lines).

Object ... ! this line is the object's header
 ... !
 ... ! and these remaining lines are its body
 ; !

(Strictly, the header material isn't constrained to a single line, but in practice it virtually always is.) The header defines two things: the object's
name(s), and its relationship (if any) to a parent object. First we'll talk about the pair of names, internal and external, which an object may possess.

Object names

Compare and contrast:

The internal name (iname) ... Whereas the external name (xname) ...

is optional is optional

is used at compile-time when one object needs to refer to another
object

is used at run-time to tell the player where he is and what he can see

cannot be changed at run-time (obviously) can be changed at run-time, using the short_name property (and indeed
is also known as the short name)

is not normally visible to the player (but see below) can be output using print (name) iname

can be up to 32 characters long, comprising letters, digits and
underscores, where uppercase and lowercase letters are equivalent, and
the first character cannot be a digit

can be up to 256 characters long, with few restrictions, and must be
enclosed in quotes "..."

must be unique within the program need not be unique within the program

Here's the syntax:

Object iname "xname"
 ... ;

If the game needs to mention an object which doesn't have an xname, it uses the iname in parentheses (...) or, if the object doesn't have an iname
either, the object's internal number in parentheses. This looks awful -- and can happen unexpectedly even when you thought the object's name
would never appear -- so it's good practice to give every object a sensible external name. And, since you can't refer within the program to an object
which doesn't have an iname, you might as well consistently assign those as well. Here's a typical example:

Object kitchen_table "table"
 ... ;

Object relationships

In Inform, objects can be related one to another such that any given object has at most one parent (superior)
object, and any number of child (subordinate) objects. This type of relationship model is commonly represented
as a tree structure, as in this example:

One of the advantages of this structure is that moving an object within the tree -- changing its parent, if you
like -- automatically moves any children of that object. This reflects natural behaviour; if for example the player
TAKEs the bottle (so that he, rather than the table, becomes its parent) the label and the cork travel right along
too.

While these parent-child relationships change frequently during the course of a game, they need to be established in a known pattern at the game's
inception. While this could be done dynamically with lots of move ... to ... ; statements in the game's Initialise() routine, it's much more efficient
to set things up statically at compile-time. Remember, too, that a parent isn't essential: unlike the real world, an Inform object can start out as an
orphan, acquiring and losing parents throughout its life.

Relationships are defined in the object headers. There are two possible syntaxes:

Object iname "xname" parent_iname
 ... ;

Object set_of_arrows iname "xname"
 ... ;

The first syntax is easier to explain, so we'll cover it first. Immediately after the object's xname, you can supply the iname of the object's parent.
Here's our example tree using this syntax:

Object kitchen "Kitchen"
 ... ;

Object kitchen_table "table" kitchen
 ... ;

Object bottle "bottle" kitchen_table
 ... ;

Object label "label" bottle
 ... ;

Object cork "cork" bottle
 ... ;

Object glass "glass tumbler" kitchen_table
 ... ;

The kitchen object has no parent. This is one of the necessary conditions for it being a 'room'; the other is that it is possible during the game for the
player to move there, thus becoming a child of the room object. The kitchen_table specifies that its parent is the kitchen, while the bottle and the
glass define the kitchen_table as their parents, and so on. The essential point is: each child object specifies the iname of an object which is to be its
initial parent; that parent object must already have been defined at some previous location in the program.

The alternative syntax also demands that a object's parent has already been defined, but is more reliant on precise physical ordering. Here's the
same tree:

Object kitchen "Kitchen"
 ... ;

Object -> kitchen_table "table"
 ... ;

Object -> -> bottle "bottle"
 ... ;

Object -> -> -> label "label"
 ... ;

Object -> -> -> cork "cork"
 ... ;

Object -> -> glass "glass tumbler"
 ... ;

The definition of the kitchen is unchanged. This time, though, the kitchen_table doesn't explicitly mention the kitchen as its parent. Instead, it
includes a single arrow -> immediately before its iname: read one arrow as saying "I'm a child of the nearest previous object without an arrow". Next,
we find the bottle with two arrows -> ->, which reads as "I'm a child of the nearest previous object with a single arrow". You won't now be surprised
to learn that the label's three arrows make it a child of the two-arrow bottle; the cork also has three arrows, and so it too is a child of the bottle.
Finally, the glass has only two arrows, making it a child of the nearest previous single-arrow object -- the kitchen_table.

Which syntax you use is a matter for personal preference; they both achieve exactly the same results. And in fact, you might think that mixing the
two formats would be a good compromise? Well it might be... as long as you maintain a consistent approach for each top-level (parentless) object.
Consider this example:

Object kitchen "Kitchen"
 ... ;

Object kitchen_table "table" kitchen
 ... ;

Object bottle "bottle" kitchen_table
 ... ;

Object -> label "label"
 ... ;

Object -> cork "cork"
 ... ;

Object glass "glass tumbler" kitchen_table
 ... ;

Does it give the same results as the previous versions? Surprisingly, no: the label and the cork end up as children of the kitchen rather than the
bottle. Seems that the compiler isn't counting literal sequences of ->, but instead is going by actual depth of object nesting. To achieve the desired
structure, you've got to change those -> back into -> -> ->, which rather defeats the object. Bummer, I reckon.

That's covered the object header -- the name and relationship stuff. Next, we'll look at the general organisation of the rest of the object -- its body.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010521/http://www.firthworks.com/roger/infancy/body.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

Unlike the single-line header, the body of an object usually occupies at least three or four lines; thirty or forty lines is common, and three or four
hundred isn't unheard-of. But that's advanced stuff: our aspirations at this stage are much more modest -- understand the permitted syntax.

Body segments

Just as we divided the overall object definition into a header and a body, it's useful to subdivide the body into segments. There are four possible
segments; they're all optional, and often only one or two are needed. The segments can occur in any order; each is introduced by a keyword:

Object header_data
 class ... ! inheritance classes
 with ... ! public properties
 private ... ! private properties
 has ... ! attributes flags
 ;

The term header_data represents the name/relationship material that we covered on the previous page; hopefully you now know what that all
means. Next, we'll summarise the use of the four segments types.

"class" segment

The class keyword introduces a space-separated list of class names from which this object inherits parts of its definition.

class class_iname class_iname ... class_iname

This won't make much sense until we've talked about class definitions, so we'll leave the details of the class segment until later. To be going on with,
here's an example:

Object kitchen_table "table"
 class Furniture
 ... ;

"with" segment

The with keyword introduces a comma-separated list of the object's (public) property variables.

with property_def, property_def, ... property_def

Here, each property_def represents a variable which is associated with this object, and therefore consists of a prop_name and (optionally) an initial
value. In fact, you can have:

no initial value -- the prop_name is a scalar variable initialised to zero
one initial value -- the prop_name is a scalar variable initialised to that value
a space-separated list of initial values -- the prop_name is a word array initialized to those values

That is, for each property_def in the with syntax definition, you can substitute any of:

prop_name
 or
prop_name value
 or
prop_name value value ... value

Finally, each value in this definition can be anything that can be evaluated at compile-time:

number
 or
'dictionary_word'
 or
"string"
 or
[; statement; statement; ... statement;]

The next page has more to say about the use of properties, but here's a short example:

Object kitchen_table "table"
 with name 'battered' 'pine' 'table',
 description "The table is scuffed and stained with indeterminate substances.",
 ... ;

"private" segment

The private keyword introduces a comma-separated list of the object's internal (private) property variables.

private property_def, property_def, ... property_def

The structure of the private segment is exactly the same as the with segment, and in fact the only difference between the two is that the
property_def settings in a with segment are accessible from other objects, while those in a private segment can be accessed only by its own object.
It turns out that this distinction is of minimal value in most games, and the majority of authors never feel the need to use private properties. Follow
their lead, sez I.

"has" segment

The has keyword introduces a space-separated list of true/false (on/off, present/absent, set/unset) flags associated with the object.

has attribute_def attribute_def ... attribute_def

Each attribute_def is either an attr_name (which sets that flag value to true), or ~attr_name (which sets the flag to false).

The next page has more to say about the use of attributes, but here's a short example:

Object kitchen_table "table"
 has static supporter
 ... ;

The (almost) complete object syntax

We've mentioned the various elements making up an object definition; now's the time to summarise what we've said so far. The commonly-found
and generally useful syntax of an object is something like:

Object set_of_arrows iname "xname" parent_iname
 class class_iname class_iname ... class_iname
 with prop_name value,

prop_name value,
 ...

prop_name value
 has attr_name attr_name ... attr_name;

Notes

1. The definition starts with Object and ends with ;
2. All four header_data items are optional. You can't use both set_of_arrows and parent_iname
3. The private segment (which occurs very rarely) has been omitted from this explanation
4. The class segment (which defines inheritance classes), the with segment (which defines property variables) and the has segment (which

defines attribute flags) are all optional, and can occur in any order
5. For each property variable, the prop_name is usually followed by a single value (a number, a string, a routine, etc) but can be followed by a

space-separated list of values, or by nothing
6. For each attribute flag, the attr_name can be prefixed by a tilde (~) to turn off the flag. Since they're off by default, you'll usually do this only

to cancel an attribute which was set by the object's class
7. In general, spaces are used to separate the various items within an object definition. The only exception is the comma (,) which separates one
property_def from the next. Specifically, you don't need to use commas in the header_data, or in the class or has segments

Phew! Spelling out the object syntax is a bit of a hard slog, but it's important to be confident with what's allowed. Next, we talk some more about
properties and attributes.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010535/http://www.firthworks.com/roger/infancy/panda.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

Here's a quick roundup of some of the standard object property variables and attribute flags, and how you can use them at run-time.

Library properties and attributes

The Inform Library defines about 48 property variables (those marked "++" are additive, explained when we cover classes):

add_to_scope
after ++
article
articles

before ++

cant_go
capacity

d_to
daemon
describe ++
description
door_dir
door_to

e_to
each_turn ++

found_in

grammar

in_to
initial
inside_description
invent

life ++
list_together

n_to
name ++
ne_to
number
nw_to

orders
out_to

parse_name
plural

react_after
react_before

s_to
se_to
short_name
short_name_indef
sw_to

time_left
time_out

u_to

w_to
when_closed
when_off
when_on
when_open
with_key

The Library also defines about 31 attribute flags:

absent
animate

clothing
concealed
container

door

edible
enterable

female

general

light
lockable
locked

male
moved

neuter

on
open
openable

pluralname
proper

scenery
scored
static
supporter
switchable

talkable
transparent

visited

workflag
worn

These definitions are heavily inter-related with the actions and verbs supplied with the standard Library: for example, the verbs WEAR/DON and
REMOVE/SHED/DISROBE/DOFF invoke the actions Wear and Disrobe respectively; these in turn use the object's clothing and worn attributes. But that
doesn't stop you using Library attributes for your own purposes, if that makes logical sense, and it certainly doesn't prevent you from creating your
own definitions.

Using properties and attributes

Compare and contrast:

A property variable ... Whereas an attribute flag ...

is usually a single (16-bit) word, but can be an array of up to 32 such
words

is always stored as a single bit

can contain anything: a number, an address of a dictionary word, a
(pointer to a) string, a (pointer to a) routine

is either true (on, present, set) or false (off, absent, unset)

may either be a common property, pre-declared by the directive
Property prop_name; (as are all of the standard 48), or an individual
property. A common property applies to all objects whereas an
individual property, which can be instantiated simply by using a new
prop_name in the with segment of an object definition, applies only to
that object. Only 62 common properties can be declared, but there is no
effective limit on the number of individual properties (so those are what
I recommend you to use)

are all common, pre-declared by the directive Attribute attr_name; (as
are all of the standard 31). An attribute applies to all objects. Only 48
attributes can be declared

can be tested at run-time by if (iname provides prop_name) ...; and
by statements like if (iname.prop_name == value) ...; (for an array, by
statements like if (iname.&prop_name-->0 == value) ...;)

can be tested at run-time by if (iname has attr_name) ...; and
if (iname hasnt attr_name) ...;

can be changed at run-time by iname.prop_name = value; (for an array,
by iname.&prop_name-->0 = value;)

can be changed at run-time by give iname attr_name; and
give iname ~attr_name;

the property variable number is defined by the Library but not used; it is
freely available in every object for you to use for your own purposes

the attribute flag general is defined by the Library but not used; it is
freely available in every object for you to use for your own purposes

Notes

1. In all cases, you can use the keyword self in place of iname when an object is referring to its own properties and attributes.
2. The statements about limits on the number of properties and attributes apply to the Inform compiler and the Z-machine; for the new Glulx

compiler and Glulxe virtual machine the limits are much higher.
3. Also, Glulx uses 32-bit words, which means that the construct iname.#prop_name returning the number of bytes occupied by the prop_name

array should be treated with caution. Using Inform you must divide this value by two to derive the number of entries in the array, whereas
using Glulx you must divide by four.

In the next pages, we'll talk about some of the more commonly-encountered properties and attributes, starting with those that control the object's
name and the way that it's addressed.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010545/http://www.firthworks.com/roger/infancy/name.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

Now that we've got the theory out of the way, we can start defining some real objects. First, we'll talk about how you can refer to your objects -- the
name property and its associates.

"name" property

The name property holds a list of dictionary words, given in single quotes '...', which along with the implicit THE and A, may be used when referring to
an object. Inform actually allows double quotes "..." also to be used here (elsewhere, something in double quotes is a string) but I recommend that
you avoid confusion by sticking to apostrophes in the name property. There's one exception to this rule: if you need to give an object a one-character
name, you can't use single quotes alone, since one character in apostrophes -- for instance 'X' -- is an ASCII character constant. Instead, for a one-
character name either follow the character with two slashes 'X//', use double quotes "X", or employ the decidedly obscure construct #n$X. Here's our
simple object tree again, with suitable name values (and also a handful of appropriate attributes):

Object kitchen "Kitchen"
 with description "Oddly, there are no exits."
 has light;

Object kitchen_table "table" kitchen
 with name 'battered' 'pine' 'table'
 has static supporter;

Object bottle "bottle" kitchen_table
 with name 'green' 'glass' 'bottle'
 has transparent;

Object label "label" bottle
 with name 'faded' 'label';

Object cork "cork" bottle
 with name 'cork';

Object glass "glass tumbler" kitchen_table
 with name 'chipped' 'glass' 'tumbler';

In this example, the kitchen object (to which we've added a minimal description property to avoid run-time errors) doesn't have a name property.
Inform assumes that you never need to refer to a room by name, and so offers a room's name as a suitable place to hold a list of 'irrelevant' words --
ones whose use triggers the response "That's not something you need to refer to in the course of this game". Often, but not always, that's a sensible
option... but see also the discussion of scenic.h on a later page.

The attributes we're using are mostly self-evident; the kitchen object has light (or else we'd be blundering around in the dark), and the
kitchen_table object is a static supporter (so that it's not takeable, and its children -- the bottle and the glass -- are properly listed in the room
description). The oddest attribute is the bottle's transparent. This doesn't refer to the fact that it's made of glass, but rather ensures that the bottle's
children -- the label and the cork -- are in scope and can be examined (though they don't yet appear in the bottle's description).

"parse_name" property

Given only this basic set of properties and attributes, we can compile and test the room. Even in this minimal state, it all works remarkably well,
insofar as the room's contents can be examined and manipulated. You can refer to the only piece of furniture as THE TABLE, THE BATTERED PINE
TABLE, PINE, and so on. The most obvious problem is with the word GLASS, used in both the bottle and the tumbler. You can refer to THE GLASS
BOTTLE and THE GLASS TUMBLER easily enough, but if you mention simply THE GLASS, Inform will ask which of the two objects is meant. Here, it's
fairly clear that a player using THE GLASS would expect to address the tumbler rather than the bottle. To fix this, we need to teach the bottle not to
respond to the word GLASS alone. We do this by supplementing or replacing its name property with a parse_name property. In this example, we replace
name completely:

Object bottle "bottle" kitchen_table
 with parse_name [wd adj_count noun_count;
 if (parser_action == ##TheSame) return -2;
 wd = NextWord();
 while (wd == 'green' or 'glass' or 'wine' or 'corked')
 { wd = NextWord(); adj_count++; }
 while (wd == 'bottle' or 'flask' or 'flagon')
 { wd = NextWord(); noun_count++; }
 if (noun_count > 0) return noun_count + adj_count;
 return 0;

]
 has transparent;

The primary job of an object's parse_name routine is to count the number of consecutive input words which could apply to that object. In the example
code above (shamelessly stolen from Neil Cerutti's excellent Ditch Day Drifter tutorial), zero or more adjectives can precede one or more nouns, so
that GREEN GLASS BOTTLE returns a count of 3, GLASS BOTTLE returns 2, BOTTLE returns 1 but GLASS returns 0. Since the bottle now effectively
ignores the solitary word GLASS, the tumbler is free to recognise it unambiguously. (You can also write a parse_name routine which returns -1, in
which case you must additionally supply a name property which Inform then uses in the conventional way.)

A parse_name routine has a secondary role: helping the parser to choose between apparently identical objects. The test on the first line --
if (parser_action == ##TheSame) -- ensures that we deal with that situation separately. Here's a short run-time example of what we've built so far:

Kitchen
Oddly, there are no exits.

You can see a table (on which are a bottle and a glass tumbler) here.

>EXAMINE THE TABLE
You see nothing special about the table.

>TAKE THE BOTTLE
Taken.

>EXAMINE IT
You see nothing special about the bottle.

>INV
You are carrying:
 a bottle

>EXAMINE LABEL
You see nothing special about the label.

>TAKE IT
That seems to be a part of the bottle.

>TAKE GLASS
Taken.

While the player uses words defined in name and parse_name properties, the game itself refers to an object by its xname. More on that next.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010555/http://www.firthworks.com/roger/infancy/list.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

An object's external name (xname) -- the double-quoted text in the header line -- is used whenever Inform needs to tell you of the object's presence.
You have considerable control over the way in which the xname is used.

"pluralname" and "proper" attributes

When a object is mentioned in a room's description, or in the player's inventory, Inform generally prefixes it with the indefinite article A or AN. Two
attributes modify this behavior: pluralname changes the prefix to SOME (giving, for example "On the table are some scissors."), and proper removes
the prefix altogether (as in "You can also see Aunt Bessie here.").

"article" property

A related technique is to create an article property -- a string or routine -- which defines an appropriate indefinite article. For example, you could
use this to cause messages like "On the table is a handful of grain." or "You can also see your Aunt Bessie here.".

Note that the pluralname also affects pronouns, causing its possessor to be addressable as THEM rather than IT. That's fine for some things, for
example the scissors, but not for others. You might use article "some" to achieve "On the table is some chocolate." which is still addressable as IT.

There's also an articles property, but it's useful only in non-English games.

"short_name" property

The short_name provides a way of extending or replacing an object's xname at run-time. We can use it to bring the cork into play, by making the
bottle announce itself as a "corked bottle" when appropriate. All it takes is this simple routine:

Object bottle "bottle" kitchen_table
 with parse_name [wd adj_count noun_count;
 if (parser_action == ##TheSame) return -2;
 wd = NextWord();
 while (wd == 'green' or 'glass' or 'wine' or 'corked')
 { wd = NextWord(); adj_count++; }
 while (wd == 'bottle' or 'flask' or 'flagon')
 { wd = NextWord(); noun_count++; }
 if (noun_count > 0) return noun_count + adj_count;
 return 0;
],

short_name [;
 if (cork in self) print "corked ";
 rfalse;

]
 has transparent;

The routine returns false, so Inform carries on and prints the original xname after the word "corked ". Alternatively, the routine could print a
completely new xname and then, by returning true, prevent the original xname from being output.

As things stand, we can examine the cork but not take it: Inform treats something inside a transparent object as being part of that object. Let's fix
that, by giving the cork a before routine:

Object cork "cork" bottle
 with name 'cork' 'stopper',

before [;
 Remove, Take, Pull:
 if ((self notin bottle) || (second ~= bottle or nothing))
 rfalse;
 move self to player;
 "You pull the cork from the bottle.";
 Insert:
 if ((self notin player) || (second ~= bottle)) rfalse;
 move self to bottle;
 "You put the cork in the bottle.";

];

Finally, while we're dealing with the cork, we can extend the vocabulary by adding CORK and UNCORK verbs, so that UNCORK THE BOTTLE is a
synonym for REMOVE THE CORK FROM THE BOTTLE:

Object bottle "bottle" kitchen_table
 with parse_name [wd adj_count noun_count;
 if (parser_action == ##TheSame) return -2;
 wd = NextWord();
 while (wd == 'green' or 'glass' or 'wine' or 'corked')
 { wd = NextWord(); adj_count++; }
 while (wd == 'bottle' or 'flask' or 'flagon')

 { wd = NextWord(); noun_count++; }
 if (noun_count > 0) return noun_count + adj_count;
 return 0;
],
 short_name [;
 if (cork in self) print "corked ";
 rfalse;
],

before [;
 Uncork: <<Remove cork self>>;
 Cork: <<Insert cork self>>;

]
 has transparent;

[UncorkSub; "You can't uncork that.";];
[CorkSub; "You can't cork that.";];

Verb 'uncork' * noun -> Uncork;
Verb 'cork' * noun -> Cork;

Let's see those verbs in action:

Kitchen
Oddly, there are no exits.

You can see a table (on which are a bottle and a glass tumbler) here.

>TAKE THE BOTTLE AND GLASS
corked bottle: Taken.
glass tumbler: Taken.

>UNCORK THE BOTTLE
You pull the cork from the bottle.

>INV
You are carrying:
 a cork
 a glass tumbler
 a bottle

There's also a short_name_indef property, but it's useful only in non-English games.

"invent" property

The invent property gives you some control over the way an object is described by the INVENTORY command. An object's invent routine is called
twice, once before the object's xname is printed, and then again afterwards. Returning true from the routine prevents further processing, so either of
these examples would have the same effect:

Object cork "cork" bottle
 with name 'cork' 'stopper',

invent [;
 if (inventory_stage == 1) { print "a cork from a wine bottle"; rtrue; }

];

Object cork "wine cork" bottle
 with name 'wine' 'cork',

invent [;
 if (inventory_stage == 2) { print " from a wine bottle"; rtrue; }

];

Actually, the cork isn't a very interesting example. Instead, we'll try something more ambitious -- putting some wine into the glass. First of all, here's
our wine object:

Object wine "red wine" glass
 with name 'red' 'wine' 'plonk' 'liquid',
 article "some",
 capacity 2;

You can see that we're using the standard article property, as explained above, and that we've also added a capacity property (a standard property
normally applied only to containers and supporters) whose use will become apparent in a moment. The wine is a child of the glass, whose definition
now looks like this:

Object glass "glass tumbler" kitchen_table
 with name 'chipped' 'glass' 'tumbler',

invent [liq qty;
 liq = ChildWithProp(self,capacity);
 if (liq ~= 0) qty = liq.capacity;

 if (inventory_stage == 2) switch (qty) {
 2: print " (full)";
 1: print " (partly full)";
 default: ;
 }

]
 has transparent;

[ChildWithProp obj prop
 k;
 objectloop (k in obj) if (k provides prop) return k;
 return 0;
];

Lots going on here! This invent property is a routine with two local variables. liq is set by calling our little ChildWithProp() routine which tests
whether any of the glass's child objects have a capacity property, if so returning that object. Then, qty is set to the value of the child object's
capacity property, or remains at zero. Having obtained that property value from the child, we then use it at the second inventory_stage to print
"(full)" or "(partly full)" after the glass's xname.

You might well ask: why not make the glass an open container? Two reasons: you'd then have to write code to prevent commands like PUT THE
BOTTLE IN THE GLASS from being obeyed, and because the room description would then look like this:

Kitchen
Oddly, there are no exits.

You can see a table (on which are a corked bottle and a glass tumbler
(in which is some red wine)) here.

Those nested parentheses look a bit clumsy here, IMHO. You might also ask: why go to the trouble of providing a ChildWithProp() routine? why not
simplify the glass thus:

Object glass "glass tumbler" kitchen_table
 with name 'chipped' 'glass' 'tumbler',

invent [;
 if (inventory_stage == 2 && wine in self) switch (wine.capacity) {
 2: print " (full)";
 1: print " (partly full)";
 default: ;
 }

]
 has transparent;

This would work perfectly well; the only disadvantage is that it hard-wires the wine object into the definition of the glass. By using the
ChildWithProp() routine, we create a universal glass which can also be used for other liquids. (Actually, once we reach classes, we can change the
routine to become ChildOfClass(), but this'll do to be going on with.)

"short_name" and "parse_name" properties revisited

Now that we've made the inventory listing sensitive to the contents of the glass, let's do the same with its xname, by providing a short_name
property:

Object glass kitchen_table
 with name 'chipped' 'glass' 'tumbler',

short_name [liq qty;
 liq = ChildWithProp(self,capacity);
 if (liq ~= 0) qty = liq.capacity;
 if (qty > 0)
 print "glass of ", (name) liq;
 else
 print "empty glass tumbler";
 rtrue;

],

 has transparent;

And now, instead of always announcing itself as "a glass tumbler", the glass is either "a glass of red wine" or "an empty glass tumbler".

Kitchen
Oddly, there are no exits.

You can see a table (on which are a corked bottle and a glass of red wine) here.

>TAKE THE GLASS OF RED WINE
I only understood you as far as wanting to take the glass of red wine.

Whoops! If we change the way in which the glass announces itself, we've got to expect that the player will want to use those same words. Time for
another parse_name routine:

Object glass kitchen_table
 with parse_name [liq qty wd container_count contents_count;
 if (parser_action == ##TheSame) return -2;
 liq = ChildWithProp(self,capacity);
 if (liq ~= 0) qty = liq.capacity;
 for (wd=NextWord() : wd~=0 : wd=NextWord()) switch (wd) {
 'chipped','glass','tumbler':
 container_count++;
 'of':
 if (container_count > 0) container_count++;
 'empty','nothing':
 if (qty == 0) contents_count++;
 default:
 if (qty > 0 && IsAWordIn(wd,liq,name)) contents_count++;
 else jump exitGlass;
 }
 .exitGlass;
 if (container_count > 0) return container_count + contents_count;
 return 0;

],

 has transparent;

[IsAWordIn wd obj prop
 k l m;
 k = obj.∝ l = (obj.#prop)/2;
 for (m=0 : m<l : m++) if (wd == k-->m) rtrue;
 rfalse;
];

Another mass of stuff to take on board. Work thought it slowly, and you'll see that we allow things like THE GLASS and CHIPPED GLASS, also THE
EMPTY GLASS and GLASS OF NOTHING (if appropriate), and finally THE GLASS OF RED WINE. This last possibility is thanks to another little routine --
IsAWordIn() -- which looks in the child object's name property when parsing. Note that our glass in still independent of its contents: in another context,
THE GLASS OF FULL CREAM MILK would be just as acceptable. (By the way, sorry about that jump; it seems like the cleanest way to exit both the
switch and the for.)

Compatibility with Glulx

There's one last detail before we move on. In IsAWordIn() you'll see the statement l = (obj.#prop)/2; to find the number of bytes occupied by the
property array and thence calculate its number of word-length entries. This works fine on Inform, but fails on Glulx, where there are four bytes to a
word. Even if you're not using Glulx at the moment you might do so soon, so code defensively:

#ifndef WORDSIZE;
 Constant TARGET_ZCODE 0;
 Constant WORDSIZE 2+TARGET_ZCODE;
#endif;

[IsAWordIn wd obj prop
 k l m;
 k = obj.∝ l = (obj.#prop)/WORDSIZE;
 for (m=0 : m<l : m++) if (wd == k-->m) rtrue;
 rfalse;
];

Using Glulx, WORDSIZE is pre-defined as 4. It's not defined by Inform, so we set it to 2, and everything works properly. Note that by convention we
also define TARGET_ZCODE, even though it's never actually used, and make that little artificial reference to it (setting WORDSIZE to 2+TARGET_ZCODE rather
than simply to 2) to avoid a compiler warning.

That was a pretty heavy session! Next, we'll take things a bit easier, talking about object descriptions.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010605/http://www.firthworks.com/roger/infancy/describe.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

A number of properties control the way in which your game environment -- the rooms and their contents -- is presented to the player.

"description" and "inside_description" properties

The description is pretty easy to understand and test: for a room it's what you see upon entry and after LOOK, and for an object it's what you see
when you EXAMINE the object. It can contain a routine or a string, as in these two examples:

Object bottle "bottle" kitchen_table
 with

description [liq;
 liq = ChildWithProp(self,capacity);
 print "You see an ordinary wine bottle, of green glass,
 with a faded label and a ";
 if (cork in self) print "cork protruding from the ";
 print "slender neck";
 if (liq ~= 0) print ". There is a quantity of liquid inside";
 ".";

]
 has transparent;

Object label "label" bottle
 with name 'faded' 'label' 'lable',

description
 "Though somewhat faded and difficult to make out,
 the label seems to read ~Chat Eau~.";

The inside_description property comes into play only when the player is inside an enterable object.

"initial" and "when_XXX" properties

initial can also contain a routine or a string. Applied to an object, it is invoked (following the description for the room where it appears) until that
object has been handled by the player (strictly, until the object's moved attribute is set). The effect is to draw the player's attention to the object
(though personally I find it does this in a rather obvious and clumsy way). Applied to a room, it is invoked early in the processing cycle, before the
room's description is printed. Anyway, here it is introducing the table:

Object kitchen_table "table" kitchen
 with name 'battered' 'scuffed' 'stained' 'pine' 'table',

initial
 "In the centre of the room stands a battered pine table.",
 description
 "The table is scuffed and stained with indeterminate substances."
 has static supporter;

In a similar vein, the four properties when_closed, when_open, when_off and when_on take the place of initial for objects which are respectively
container|door, container|door open, switchable and switchable on.

Note that all of these properties are invoked only when creating a room description -- not when examining the object itself -- and apply only to
objects which are immediate children of the room -- on the floor, as it were. Nothing happens for objects on supporters or in containers.

"describe" property

The last of the descriptive properties, describe can contain a string, but really requires a routine. If present, it runs before initial or when_XXX. If it
returns false, any other description is then generated; if it returns true, that's all you get. It's a bit of a specialized property, not one for which a
natural example is easy to contrive.

scenic.h

If you think about it, the label object doesn't contribute much to the game. Its solitary task is to respond to EXAMINE LABEL commands, and these
only come about because the bottle's description happens to mention a label. That is, the bottle is a real object, so we try to give it a convincing
description. Unfortunately, in doing so we're likely to imply the existence of sub-objects, in which the player may well take an interest. It's bad game
design to respond "You can't see any such thing." when the player tries to EXAMINE something you've just told him about; therefore, most authors
find themselves creating a multiplicity of secondary objects whose only role is to handle EXAMINE requests.

The scenic.h library package -- obtainable from the Archive or from my home page -- offers a partial solution. It enables you to embed 'scenic' items,
which support only examination, within the parent object whose description brought them to the player's attention. For example, we could have
coded the label like this:

Object bottle "bottle" kitchen_table
 with

 description [liq;
 liq = ChildWithProp(self,capacity);
 print "You see an ordinary wine bottle, of green glass,
 with a faded label and a ";
 if (cork in self) print "cork protruding from the ";
 print "slender neck";
 if (liq ~= 0) print ". There is a quantity of liquid inside";
 ".";
]

scenic
 'faded' 'label' 'lable' 0 "Though somewhat faded and difficult
 to make out, the label seems to read ~Chat Eau~."
 has transparent;

This is a simple case; scenic.h is of more value when the alternative is to create a whole handful of secondary objects.

Right, we can't put it off any longer. Time to talk about the Class directive and the class segment.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010616/http://www.firthworks.com/roger/infancy/class.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

Actually, classes are remarkably straightforward.

"Class" directive

The Class compile-time directive is almost identical to the Object directive we studied earlier, except that the header_data consists only of a
mandatory iname; you can't supply a set_of_arrows, xname or parent_iname. In the body, you can use the same four class, with, private and has
segments (and, as for Objects, the class and private segments are relatively rare):

Class iname
 with prop_name value,

prop_name value,
 ...

prop_name value
 has attr_name attr_name ... attr_name;

The iname is the name of your new class of objects, so by convention you should give it an initial capital letter. One of the mostly commonly-
encountered user-defined classes is the Room:

Class Room
 with description "A bare room."
 has light;

Here we have a prototype -- a default set of properties and attributes -- which is automatically applied to each object of this class, unless over-
ridden. Let's see a few examples:

Object cell "Monastery cell"
 class Room;

Object kitchen "Kitchen"
 class Room
 with description "Oddly, there are no exits.";

Object cellar "Gloomy cellar"
 class Room
 with description "Even with your torch, you see only dust and cobwebs."
 has ~light;

Notice the class segment; way back, we said we'd defer discussion of this segment until later, and now's the time. class simply allows us to say that
an object is a member of a named (and predefined) class, from which it inherits its behaviour. The cell inherits both the default description and the
light attribute. The kitchen provides its own description but inherits the light. The cellar over-rides both, so that it has a description which you
can't see unless you provide your own light. Another example:

Class Furniture
 with before [; Take,Pull,Push,PushDir:
 print_ret (The) self, " is too heavy for that.";
]
 has static supporter;

Object kitchen_table "table" kitchen
 class Furniture
 with name 'battered' 'pine' 'table',
 initial
 "In the centre of the room stands a battered pine table.",
 description
 "The table is scuffed and stained with indeterminate substances.";

This time, our Furniture class supplies static supporter attributes, plus a before property which generates a more credible response than the
standard "That's fixed in place.". These characteristics will be valid for most pieces of furniture, but can again be over-ridden as circumstances
dictate. (For example, a marble statue might be defined with ~supporter.)

The basic principle is: if your game has more than one object with the same general characteristics, you should consider basing it on a Class. The
advantages are:

your individual objects become simpler and more reliable (because some or all of their behaviour need be defined only once in the Class rather
then repeated in each Object);
you can use if (obj ofclass class_iname) ... statements as an easy way of detecting all objects of the same class.

Drinking vessels and their contents might also be fairly useful classes, so let's generalise our glass and wine as Vessel and Liquid classes:

Class Vessel
 with parse_name [liq qty wd container_count contents_count;
 if (parser_action == ##TheSame) return -2;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 for (wd=NextWord() : wd~=0 : wd=NextWord()) switch (wd) {
 'of':
 if (container_count > 0) container_count++;
 'empty','nothing':
 if (qty == 0) contents_count++;
 default:
 if (IsAWordIn(wd,self,name)) container_count++;
 else
 if (qty > 0 && IsAWordIn(wd,liq,name)) contents_count++;
 else jump exitVessel;
 }
 .exitVessel;
 if (container_count > 0) return container_count + contents_count;
 return 0;
],
 before [; Receive:
 print_ret (The) self, " is meant for holding liquids.";]
 has transparent;

Class Liquid
 with name 'liquid',
 add_liquid [qty;
 self.capacity = self.capacity + qty;
 if (self.capacity > 0)
 return self.capacity;
 else
 { remove self; return 0; }
],
 description [; print_ret "It looks rather like ", (name) self, ".";],
 article "some",
 before [container; container = parent(self);
 Take:
 if (container ofclass Vessel) <<Take container>>;
 print_ret "You can't take a puddle of ", (name) self, ".";
 Drink:
 if (container ofclass Vessel) <<Drink container>>;
 print_ret "You can't drink a puddle of ", (name) self, ".";
],
 capacity 0; ! Liquid currently in the vessel

Notice that we've changed the Vessel's parse_name slightly to re-use our IsAWordIn() routine, so that the dictionary words defining it as a container
('chipped', 'glass' and 'tumbler') are now taken from the object's name property rather than being built in, and that ChildWithProp() has become
ChildOfClass(). Also, the Liquid has an additional add_liquid property to handle the additional and removal of quantities of liquid -- this isn't
essential, but it makes for cleaner and more self-contained objects. Here's our new glass and wine:

Object glass kitchen_table
 class Vessel
 with name 'chipped' 'glass' 'tumbler',
 short_name [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 if (qty > 0)
 print "glass of ", (name) liq;
 else
 print "empty glass tumbler";
 rtrue;
],
 invent [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 if (inventory_stage == 2) switch (qty) {
 2: print " (full)";
 1: print " (partly full)";
 default: ;
 }
 !!rfalse;
],
 description [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 print "The glass tumbler is slightly chipped,
 but still usable with care. It's currently ";
 switch (qty) {
 2: print_ret "full of ", (name) liq, ".";
 1: print_ret "partly full of ", (name) liq, ".";
 default: "empty.";
 }
],
 before [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 Drink, Empty:
 if (self notin player)
 print_ret "You need to be holding ", (the) self, ".";

 switch (qty) {
 2: liq.add_liquid(-1); print_ret "You take a mouthful of ", (name) liq, ".";
 1: liq.add_liquid(-1); print_ret "You finish the rest of ", (the) liq, ".";
 default: print_ret "There's nothing in ", (the) self, ".";
 }
];

Object wine "red wine" bottle
 class Liquid
 with name 'red' 'wine' 'plonk',
 capacity 2;

You'll see that the glass is only slightly shorter: it still has to handle its own description, inventory and so on. The wine, on the other hand, is much
simpler, since almost all of its behaviour is now encapsulated in its Liquid class. Also, now that we've added a DRINK action, we can actually test it:

Kitchen
Oddly, there are no exits.

In the centre of the room stands a battered pine table.

On the table are a corked bottle and a glass of red wine.

>EXAMINE BOTTLE
You see an ordinary wine bottle, of green glass, with a faded label
and a cork protruding from the slender neck.

>EXAMINE GLASS
The glass tumbler is slightly chipped, but still usable with care.
It's currently full of red wine.

>EXAMINE WINE
It looks rather like red wine.

>TAKE IT
Taken.

>INVENTORY
You are carrying:
 a glass of red wine (full)

>DRINK SOME WINE
You take a mouthful of red wine.

>AGAIN
You finish the rest of the red wine.

>INVENTORY
You are carrying:
 an empty glass tumbler

Multiple inheritance

Before we reached this page, new objects -- defined by using the Object directive -- were actually members (or instances) of the Object class; that
was the common parent from which all objects inherited their default behaviour. (Not that you needed to know this; not that it mattered.) So what
happens when we construct a new class -- say Room -- and then create the kitchen object? Easy: the kitchen is a member of two classes, Object and
Room, and it inherits from both. This idea of multiple inheritance is both important and powerful, because it means that an object can be a member of
many classes at once, acquiring some behavioural aspects from each. Those aspects don't need to be large and complex; sometimes just being a
member of a class is sufficient to differentiate one collection of objects from the rest. For example, consider these three classes:

Class Small;

Class Food
 has edible;

Class Inflammable
 with before [; Burn:
 remove self;
 print_ret "You set fire to ", (the) self,
 ", which quickly burns to nothing.";
];

From these classes, we might defines Small objects (which can perhaps be put in a pocket, or hidden in a mousehole), Food objects (which can be
eaten), and Inflammable objects which can be consumed by fire. So here's a chocolate bar, which is all of these:

Object choc_bar "chocolate" kitchen
 class Food Small Inflammable
 with name 'chocolate' 'bar' 'hershey' 'block',
 article "some",
 description "The bar of chocolate looks yummy!";

That is, class allows us to say that an object is a member of several classes (as well as of the implicit Object class), and inherits its behaviour from
all of them. Thus, the choc_bar acquires an edible attribute from Food, and a before property from Inflammable (but nothing specific, other than

class membership, from Small). To these it adds its own name, article and description properties... and there's a complete object which can be
examined, eaten or burned.

In this simple example, there is no overlap between the properties/attributes of the objects itself, and those of the three component classes. But
suppose there had been some commonality? What if we'd written:

Class Small
 with name 'small' 'tiny' 'little',

description "It's not very big.";

Class Food
 with name 'delicious',

description "Looks good enough to eat."
 has edible;

Class Inflammable
 with before [; Burn:
 remove self;
 print_ret "You set fire to ", (the) self,
 ", which quickly burns to nothing.";
];

Object choc_bar "chocolate" kitchen
 class Food Small Inflammable
 with name 'chocolate' 'bar' 'hershey' 'block',
 article "some",
 description "The bar of chocolate looks yummy!";

Here there's more than one name, and more than one description; which one is used? The answer's a bit confusing: all of the names, but only one of
the descriptions -- the "yummy!" one from the object itself. It's exactly as though we'd written:

Class Small;

Class Food
 has edible;

Class Inflammable
 with before [; Burn:
 remove self;
 print_ret "You set fire to ", (the) self,
 ", which quickly burns to nothing.";
];

Object choc_bar "chocolate" kitchen
 class Food Small Inflammable
 with name 'small' 'tiny' 'little' 'delicious'

'chocolate' 'bar' 'hershey' 'block',
 article "some",
 description "The bar of chocolate looks yummy!";

What's happening here? There are two types of property: additive and non-additive. Additive properties, like name, are accumulated from the
definitions in the object itself and in the class(es) on which it is based. So, all the words defined in the various name properties can be used to address
the choc_bar. Non-additive properties, like description, don't accumulate. An object can have only one description, which is taken either from the
object itself or, if the object doesn't provide one, from the first class in the list. So, the choc_bar is always "yummy!" rather than "not very big" or
"good enough to eat".

Most properties are non-additive: the only ones that accumulate are: after, before, describe, each_turn, life and name. And attributes accumulate in
a slightly different way: if an individual attribute is set or unset (for example edible or ~edible) in the object itself, that's what prevails. An attribute
which isn't mentioned in the object itself will be set if it was set by any of its classes; unsetting an attribute in a class definition has no effect.

Replacing the "Object" directive

Inform supports an alternative syntax for defining objects of a user-specified class: you can supply the name of the class in place of the Object
directive, and then you don't need the explicit class segment. For example, we could have said:

Room cell "Monastery cell";

Room kitchen "Kitchen"
 with description "Oddly, there are no exits.";

Room cellar "Gloomy cellar"
 with description "Even with your torch, you see only dust and cobwebs."
 has ~light;

Only one class name can be used in place of the Object directive, so for an object which inherits from more than one class, you still need a class
segment. Our chocolate bar could be defined as:

Food choc_bar "chocolate" kitchen
 class Small Inflammable
 with name 'chocolate' 'bar' 'hershey' 'block',
 article "some",

 description "The bar of chocolate looks yummy!";

It's up to you whether to adopt this syntax: the advantage is that your program is easier to understand if the directive defining each object is a
meaningful name rather than the ubiquitous Object. Be careful with multiple inheritance; remember that non-additive properties not defined by the
object itself default to the setting from the first listed class -- that's now the one replacing the Object directive rather than the first one in the class
list (in the example, Food).

Next, a bit more on classes, and particularly on how you can create instances of a class at run-time.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20210506015748/http://www.firthworks.com/roger/infancy/dynamic.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

In previous pages we've developed a bottle and glass, placed liquid in the glass, and implemented a DRINK verb. What we need to finish things off is,
of course, some way of starting with the liquid in the bottle, so that we can POUR it into the glass. To complicate matters, the bottle can hold more
than the glass, so at times we'll have liquid in two places at once. There's any number of ways of tackling this situation: we'll use the technique of
dynamic objects -- of creating and destroying instances of the Liquid class at run-time. For this to work, we must (a) set up the Liquid class
appropriately, and (b) issue the necessary run-time messages. Happily, both of these are easy to do.

Extending the Liquid class

When we left our Liquid class on the previous page, its definition started out like this:

Class Liquid
 with name 'liquid',
 add_liquid [qty;
 self.capacity = self.capacity + qty;
 if (self.capacity > 0)
 return self.capacity;
 else
 { remove self; return 0; }
],
 description [; print_ret "It looks rather like ", (name) self, ".";],

To make it support dynamic object creation, we've changed it thus:

Class Liquid(1)
 with name 'liquid' '.spare' '.spare' '.spare' '.spare' '.spare',

short_name "liquid",
rename [sn n0 n1 n2 n3 n4 n5;

 if (sn) self.short_name = sn;
 if (n0) self.&name--;>0 = n0;
 if (n1) self.&name--;>1 = n1;
 if (n2) self.&name--;>2 = n2;
 if (n3) self.&name--;>3 = n3;
 if (n4) self.&name--;>4 = n4;
 if (n5) self.&name--;>5 = n5;

],
 add_liquid [qty;
 self.capacity = self.capacity + qty;
 if (self.capacity > 0)
 return self.capacity;
 else
 { Liquid.destroy(self); return 0; }
],
 description [; print_ret "It looks rather like ", (name) self, ".";],

We've made five changes:

1. added a number in parentheses after the iname, to define the number of dynamic instances of this class which can exist at any one time while
the game runs. Note that this doesn't include static instances, created at compile-time; there's no limit on those. Also, the phrase "at any one
time" is important: our setting of (1) permits the sequence create() ... destroy() ... create() ... destroy(), but prevents create() ...
create() ... destroy() ... destroy(), for which we'd need to have specified (2).

2. extended the name property with five spare entries, for use by rename. There's nothing special about '.spare' other than that, since it contains
a dot, it's an "untypeable" word, and so will never match anything the player types.

3. supplied a short_name property, also for use by rename.
4. created a rename property, as a convenient way of changing the name and short_name properties.
5. modified the add_liquid property by changing remove self (which detaches the object from its parent, leaving it floating free and unreferenced

but still in existence) to Liquid.destroy(self) (which completely deletes the object from the game).

Enhancing the bottle object

If we start the game with all of the liquid in the bottle, then it's natural to make the bottle responsible for creating Liquid instances in the glass. When
we last saw it, the bottle looked something like this:

Object bottle "bottle" kitchen_table
 with parse_name [wd adj_count noun_count;
 if (parser_action == ##TheSame) return -2;
 wd = NextWord();
 while (wd == 'green' or 'glass' or 'wine' or 'corked')
 { wd = NextWord(); adj_count++; }

 while (wd == 'bottle' or 'flask' or 'flagon')
 { wd = NextWord(); noun_count++; }
 if (noun_count > 0) return noun_count + adj_count;
 return 0;
],
 short_name [;
 if (cork in self) print "corked ";
 !!rfalse;
],
 description [liq;
 liq = ChildOfClass(self,Liquid);
 print "You see an ordinary wine bottle, of green glass,
 with a faded label and a ";
 if (cork in self) print "cork protruding from the ";
 print "slender neck";
 if (liq ~= 0) print ". There is a quantity of liquid inside";
 ".";
],
 before [;
 Uncork: <<Remove cork self>>;
 Cork: <<Insert cork self>>;
]
 has transparent;

So now let's add the ability to pour its contents into a Vessel:

Object bottle "bottle" kitchen_table
 with

 before [liq qty liq2;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 Uncork: <<Remove cork self>>;
 Cork: <<Insert cork self>>;
 EmptyT: if (cork in self)
 print_ret "You tip ", (the) self,
 ", but nothing happens.";
 if (qty == 0) print_ret (The) self, " is empty.";
 if (~~(second ofclass Vessel))
 "That would just make a mess.";
 liq2 = ChildOfClass(second,Liquid);
 if (liq2 == 0) { ! no Liquid in Vessel
 if (qty > second.capacity) qty = second.capacity;

liq2 = Liquid.create();
if (liq2 == 0) "*** Can't create Liquid object! ***";
liq2.rename("red wine",'red','wine','plonk');
print "You pour ", (a) liq, " into ", (the) second, ".^";
move liq2 to second;

 }
 else { ! already some Liquid in Vessel
 qty = second.capacity - liq2.add_liquid(0);
 if (qty == 0)
 print_ret (The) second, " is already full.";
 print "You add some more ", (name) liq,
 " to ", (the) second, ".^";
 }
 liq2.add_liquid(qty); liq.add_liquid(-qty);
 rtrue;
],
 capacity 10 ! Liquid the bottle can contain
 has transparent;

Liquid "liquid" bottle
 with capacity 4; ! Liquid currently in the bottle

Verb 'pour' = 'empty';

We've enhanced the bottle's before property to trap the EmptyT action; basically, that's EMPTY noun INTO noun. There's a lot happening here --
making sure the bottle is uncorked and not empty, that the destination is a Vessel which isn't already full, and so on -- but the most important lines
are highlighted. We send a create() message to the Liquid class, and receive in reply the address of a newly-created instance of the class: a Liquid
object. If the reply is zero, a new object couldn't be created, presumably because we're already at our specified limit of concurrent run-time
instances. In this example this shouldn't happen, so if it does we just output a debugging message. Assuming that object creation is successful, we
then call the new object's rename property to over-write its default short_name and name properties. Finally, more housekeeping: telling the player
what's happened, moving the new Liquid object into the Vessel, and adjusting the quantities of Liquid in the bottle and the Vessel.

Once we've primed the bottle by giving it an initial Liquid content, it's time for a test drive:

Kitchen
Oddly, there are no exits.

In the centre of the room stands a battered pine table.

On the table are a corked bottle and an empty glass tumbler.

>EXAMINE THE BOTTLE
You see an ordinary wine bottle, of green glass, with a faded label

and a cork protruding from the slender neck. There is a quantity of
liquid inside.

>UNCORK IT
You pull the cork from the bottle.

>POUR IT INTO THE GLASS
You pour some liquid into the empty glass tumbler.

>TAKE THE GLASS
Taken.

>INV
You are carrying:
 a glass of red wine (full)
 a cork

>DRINK SOME WINE
You take a mouthful of red wine.

>POUR THE BOTTLE INTO THE GLASS
You add some more liquid to the glass of red wine.

>DRINK WINE
You take a mouthful of red wine.

>DRINK WINE
You finish the rest of the red wine.

>EMPTY THE BOTTLE INTO THE GLASS
You pour some liquid into the empty glass tumbler.

>EXAMINE BOTTLE
You see an ordinary wine bottle, of green glass, with a faded label
and a slender neck.

>EXAMINE GLASS
The glass tumbler is slightly chipped, but still usable with care.
It's currently partly full of red wine.

>DRINK WINE
You finish the rest of the red wine.

>INV
You are carrying:
 an empty glass tumbler
 a cork

OK, that's about as far as we can take things here; we've reached the point where the complexities of refining the objects' behaviour would outweigh
their educational benefit. The classes and objects that we've created provide a simplistic but usable representation of liquid handling, and could
potentially be developed into a full-fledged general package; we'll leave that as an exercise for the reader.

Finally, on the past page, you'll find a listing of the complete game in its 'final' state. Enjoy!

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

The Wayback Machine - https://web.archive.org/web/20170701010657/http://www.firthworks.com/roger/infancy/game.html

Roger Firth's IF pages

InFancy -- using Inform objects
Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

This is the final form of the code, represented here for ease of reference. As ever, we start with a standard preamble:

Constant Story "INFANCY";
Constant Headline "^A juvenile INFORM program.^";
Constant MANUAL_PRONOUNS;

Include "Parser";
Include "VerbLib";

! -- !

These are the standalone routines:

[Initialise; location = kitchen;];

! Locate the (first) child object of a given Class.
[ChildOfClass obj class
 k;
 objectloop (k in obj) if (k ofclass class) return k;
 return 0;
];

! Ensure compatibility with glulx, which uses four-byte words.
#ifndef WORDSIZE;
 Constant TARGET_ZCODE 0;
 Constant WORDSIZE 2+TARGET_ZCODE; ! avoid compiler warning
#endif;

! Test if a given value occurs in a given property array of an object.
[IsAWordIn wd obj prop
 k l m;
 k = obj.∝ l = (obj.#prop)/WORDSIZE;
 for (m=0 : m<l : m++) if (wd == k-->m) rtrue;
 rfalse;
];

! -- !

The classes:

Class Room
 with description "A bare room."
 has light;

Class Furniture
 with before [; Take,Pull,Push,PushDir:
 print_ret (The) self, " is too heavy for that.";
]
 has static supporter;

Class Vessel
 with parse_name [liq qty wd container_count contents_count;
 if (parser_action == ##TheSame) return -2;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 for (wd=NextWord() : wd~=0 : wd=NextWord()) switch (wd) {
 'of':
 if (container_count > 0) container_count++;
 'empty','nothing':
 if (qty == 0) contents_count++;
 default:
 if (IsAWordIn(wd,self,name)) container_count++;
 else
 if (qty > 0 && IsAWordIn(wd,liq,name)) contents_count++;
 else jump exitVessel;
 }
 .exitVessel;
 if (container_count > 0) return container_count + contents_count;
 return 0;
],
 invent [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 if (inventory_stage == 2) {
 if (qty == self.capacity) print " (full)";
 else
 if (qty > 0) print " (partly full)";
 }
],

 description [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 print "It's currently ";
 if (qty == self.capacity) print_ret "full of ", (name) liq, ".";
 else
 if (qty > 0) print_ret "partly full of ", (name) liq, ".";
 else "empty.";
],
 before [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 Drink, Empty:
 if (self notin player)
 print_ret "You need to be holding ", (the) self, ".";
 if (qty > 1)
 print "You take a mouthful of ", (name) liq, ".^";
 else
 if (qty == 1)
 print "You finish the rest of ", (the) liq, ".^";
 else print_ret "There's nothing in ", (the) self, ".";
 liq.add_liquid(-1);
 rtrue;
 Receive: print_ret (The) self, " is meant for holding liquids.";
],
 capacity 0 ! Liquid the vessel can contain
 has transparent;

Class Liquid(1)
 with name 'liquid' '.spare' '.spare' '.spare' '.spare' '.spare',
 short_name "liquid",
 rename [sn n0 n1 n2 n3 n4 n5;
 if (sn) self.short_name = sn;
 if (n0) self.&name-->0 = n0;
 if (n1) self.&name-->1 = n1;
 if (n2) self.&name-->2 = n2;
 if (n3) self.&name-->3 = n3;
 if (n4) self.&name-->4 = n4;
 if (n5) self.&name-->5 = n5;
],
 add_liquid [qty;
 self.capacity = self.capacity + qty;
 if (self.capacity > 0)
 return self.capacity;
 else
 { Liquid.destroy(self); return 0; }
],
 description [; print_ret "It looks rather like ", (name) self, ".";],
 article "some",
 before [container; container = parent(self);
 Take:
 if (container ofclass Vessel) <<Take container>>;
 print_ret "You can't take a puddle of ", (name) self, ".";
 Drink:
 if (container ofclass Vessel) <<Drink container>>;
 print_ret "You can't drink a puddle of ", (name) self, ".";
 Empty:
 if (container ofclass Vessel) <<Empty container>>;
 print_ret "You can't do that.";
 EmptyT:
 if (container ofclass Vessel) <<EmptyT container second>>;
 print_ret "You can't do that.";
],
 capacity 0; ! Liquid currently in the vessel

! -- !

The instances of those classes -- the actual game objects:

Room kitchen "Kitchen"
 with description "Oddly, there are no exits.";

Furniture kitchen_table "table" kitchen
 with name 'battered' 'pine' 'table',
 initial
 "In the centre of the room stands a battered pine table.",
 description
 "The table is scuffed and stained with indeterminate substances.";

Object bottle "bottle" kitchen_table
 with parse_name [wd adj_count noun_count;
 if (parser_action == ##TheSame) return -2;
 wd = NextWord();
 while (wd == 'green' or 'glass' or 'wine' or 'corked')
 { wd = NextWord(); adj_count++; }
 while (wd == 'bottle' or 'flask' or 'flagon')
 { wd = NextWord(); noun_count++; }
 if (noun_count > 0) return noun_count + adj_count;
 return 0;
],
 short_name [;

 if (cork in self) print "corked ";
],
 description [liq;
 liq = ChildOfClass(self,Liquid);
 print "You see an ordinary wine bottle, of green glass,
 with a faded label and a ";
 if (cork in self) print "cork protruding from the ";
 print "slender neck";
 if (liq ~= 0) print ". There is a quantity of liquid inside";
 ".";
],
 before [liq qty liq2;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 Uncork: <<Remove cork self>>;
 Cork: <<Insert cork self>>;
 Drink: "Please don't drink from the bottle!";
 Empty: if (cork in self)
 "Fortunately, the cork prevents you making a mess.";
 if (qty == 0) print_ret (The) self, " is empty.";
 liq.rename("red wine",'red','wine','plonk');
 print "You pour ", (the) liq, " onto the floor.^";
 move liq to location;
 rtrue;
 EmptyT: if (cork in self)
 print_ret "You tip ", (the) self,
 ", but nothing happens.";
 if (qty == 0) print_ret (The) self, " is empty.";
 if (~~(second ofclass Vessel))
 "That would just make a mess.";
 liq2 = ChildOfClass(second,Liquid);
 if (liq2 == 0) { ! no liquid in Vessel
 if (qty > second.capacity) qty = second.capacity;
 liq2 = Liquid.create();
 if (liq2 == 0) "*** Can't create Liquid object! ***";
 liq2.rename("red wine",'red','wine','plonk');
 print "You pour ", (a) liq, " into ", (the) second, ".^";
 move liq2 to second;
 }
 else { ! already some liquid in Vessel
 qty = second.capacity - liq2.add_liquid(0);
 if (qty == 0)
 print_ret (The) second, " is already full.";
 print "You add some more ", (name) liq,
 " to ", (the) second, ".^";
 }
 liq2.add_liquid(qty); liq.add_liquid(-qty);
 rtrue;
],
 capacity 10 ! Liquid the bottle can contain
 has transparent;

Liquid "liquid" bottle
 with capacity 4; ! Liquid currently in the bottle

Object label "label" bottle
 with name 'faded' 'label' 'lable',
 description
 "Though somewhat faded and difficult to make out,
 the label seems to read ~Chat Eau~.";

Object cork "cork" bottle
 with name 'cork' 'stopper',
 before [;
 Remove, Take, Pull:
 if ((self notin bottle) || (second ~= nothing or bottle))
 rfalse;
 move self to player;
 "You pull the cork from the bottle.";
 Insert:
 if ((self notin player) || (second ~= bottle)) rfalse;
 move self to bottle;
 "You put the cork in the bottle.";
],
 description
 "It's a small cork, of the type associated with wine bottles.";

Vessel glass kitchen_table
 with name 'chipped' 'glass' 'tumbler',
 short_name [liq qty;
 liq = ChildOfClass(self,Liquid);
 if (liq ~= 0) qty = liq.add_liquid(0);
 if (qty > 0)
 print "glass of ", (name) liq;
 else
 print "empty glass tumbler";
 rtrue;
],
 description [;
 print "The glass tumbler is slightly chipped,
 but still usable with care. ";
 Self.Vessel::description();
],

 capacity 2; ! Liquid the glass can contain

! -- !

Finishing up with the standard Grammar and our small extensions to it:

Include "Grammar";

[UncorkSub; "You can't uncork that.";];
[CorkSub; "You can't cork that.";];

Verb 'uncork' * noun -> Uncork;
Verb 'cork' * noun -> Cork;
Verb 'pour' = 'empty';

! -- !

The techniques that we've talked about here are certainly not the only ways of producing the required behaviour; they're not even necessarily the
best ones. As ever, comments are welcome; corrections even more so. I'd hate to be misleading those in most need, so if any of you gurus spot an
error, please let me know.

Intro Header Body Properties/attributes Names Listings Descriptions Classes Dynamic objects The game

