The Z-Machine Standards Document

Graham Nelson

Version 1.0

22nd June 1997
two misprints corrected, 9th August
resources appendix updated and discovery added to header table, 4th September

Additional appendices:

Quetzal: Z-machine Common Save-File Format Standard
Martin Frost
Version 1.3b

Blorb: An IF Resource Collection Format Standard
Andrew Plotkin
Version 1.1

Z-Machine Standard 1.1 Proposal
Kevin Bracey, Jason C. Penney
Draft 7

Overview

The Z-Machine Standar dS DOCUMENTcooiiiiiiiiie e 1
Quetzal: Z-machine Common Save-File Format Standard............ccccoeeeeevieevcie v 127
Blorb: An IF Resource Collection Format Standard..............cooveviiiinieiiiesiienee e 141
Z-Machine Standard 1.1 ProPOSAlccoueiieiiiieniiiaiie ettt s snneennee s 157
g0 PR P PP PPR PR 175
Contents
The Z-Machine Standar dS DOCUMENTcooviiiiiiie i 1
L0011 117 USROS 2
== o= RS 4
Overview of Z-maching @rChITECIUNE.eiiuiiiieei e 8
L. TRE MEMONY MNP, ettt ettt b e he et b e s ae e et e e beesab e e abe e beesaeeenneesneennneen 12
2. NUMDBErs and @rithiMELIiC..........oe i et e e nae e ennes 15
3. How text and charaCters are @NCOTEM.eoiuiiiiiiiieiie et 17
4. HOW INSIFUCEIONS @€ ENCOUEMcouviiieieiiieiee ettt sttt ettt n e e e nnneennees 26
5. HOW rOUtINES @€ ENCOOEA...........eieiieiiee ittt ettt ae e e e beesneennneen 31
6. The game state: storage and roUtiNg CallSooviiiiiieiiecee e 32
7. Output streams and file NANAIING.oiviiie e 36
I S o 1= 1070 o = S 40
LS S0 LW 0T [= £ S 54
10. INPUL SEreaMS AN GEVICESc.eeiiieiieeiee ettt sttt st st e et e e saneenneesneesanean 57
11. Theformat of thE NEAEYoo e enee s 61
12, TNE ODJECE TADIE ...ttt n e neenaneen 65
13. Thedictionary and 1€XICal @NAIYSIS........coiuiiiuieiieiie et nane e 68
14. Complete tale Of OPCOUES........ccuiiiieeii ettt n e sne e e an 70
15. DICLIONAIY OF OPCOUES.........eeiiieiieiteetee st st et ettt ettt sb e s e e et e e b e sss e st e e beesseeenneenneennnean 79
16. Font 3 and CharaCter graphiCS........c uueiiieiie ettt snneeneas 105
Appendix A. Error messages and debUGGINGcoveereeiierieiieeie st seessne s sineen 111
Appendix B. Conventional contents of the Neader ..o 112
Appendix C. RESOUICES aVaIl@DI€..........cooiiiiiiee e 114
Appendix D. A short history of the Z-maChine.............ccceoiiiiiiiiie e 118
APPENIX B, SEBLISHICS. ... euveeeeesiee ettt sttt be e as e et e e s ae e san e et e e sneenaneen 121
Appendix F. CanoniCal SIOrY FilESccuiiiiiieiie e 124
Quetzal: Z-machine Common Save-File Format Standardccccoeeeevieeeccieeccee e 127
O] 01101 o] 127
2. OVEFAI SLIUCIUIEeee e eeee ettt ettt e et e e e e e en e e etae e snte e e snteeansaeesnbeeeaneeesnsaeesnseeenneennnes 128
3. Content Of AYNAMIC MEIMIOYooiuieiiieiieesiee ettt st e e e b e e saeesaneebeesanesnneenneenaes 128
O 01 =1 A0 S = SRR 129
5. ASSOCIALE SIONY Tl ettt 131

LSV LS o< 1 =10 = o LU TR PTTPPRT 132

7. EXteNSIONS O the fOrMEL........co oo 133
8. Introduction to the IFF fOrMEaL.........ooeeeeeeeeeeeeeeeee e 136
9. RESOUICES AVAIlADIE........coee oo 138
0 1< [£ 139
Blorb: An |F Resource Collection Format Standardccccceeeeieiinnens 141
0. OVEFAll SITUCLUTE.......ceee oo 141
1. Contents of the ReSOUrCe INAEX ChUNK...........uuee s 142
2. PIcture RESOUICE ChUNKS ... 142
3. S0UNd RESOUICE ChUNKS ... 143
4, Executable RESOUICE CHUNKScooeeieeeeeeee e, 144
5. The Release NUMBEr ChUNK..........oooiieiieeee e 144
6. The Game [dentifier CHUNK...........ooooeeiieeeeeeeeeee 145
7. The Color Palette ChUNKoooe i 145
8. ThEe RESOIULION CHUNKcoeeeieeeeeeeeee et 146
9. The LOOPING CRUNKcoiiiiiiiieeie ettt e e b 149
10. Other OptioNal CRUNKSciiiieiie et b e naneenees 149
11. Z-Machine CompatibDility ISSUES...........ooiieiiiiiieiieie e 150
12. GIK COMPALiDIlITY ISSUBS........eeiiieiiieite ettt 151
13, THE T FFOIMIEAL. ... s 151
14. Other RESOUICE ATTANGEIMIENTS. ... ceuveririeieesteesiteesteesteesbeesbeesseesiseesseesseesseebeesseesareeseesanesnneeneas 151
15. Rationales and RatiONAli ZaHiONS.uueeee s 152
Z-Machine Standard 1.1 Proposalcoceeiiieiiiiiieiiiesie et nnee s 157
I 1 0o [0 Tox o o [157
2. UPAAES / ClarifICaIONS.ciueeeeieiiee ettt st b et b e san e e e neenees 158
B AAAIIONS. ..o 166
L0 [T 175

Preface

The Z-machine was created on a coffee table in Pittsburgh in 1979. It is an imaginary computer
whose programs are adventure games, and is well-adapted to its task, implementing complex
games remarkably compactly. They were still perhaps 100K long, too large for the memory of
the home computers of their day, and the Z-machine seems to have made the first usage of vir-
tual memory on a microcomputer. Further ahead of its time was the ability to efficiently save and
restore the entire execution state.

The design's cardinal principle is that any game is 100% portable to different computers:. that is,
any legal program exactly determines its behaviour. This portability is largely made possible by
a willingness to constrain maximum as well as minimum levels of performance (for instance,
dynamic memory allocation isimpossible).

Infocom’s catalogue continues to be sold and to be played under interpreter programs, either
original Infocom ones or more recent and generally better freeware ones. About 130 story files
compiled by Infocom's compiler Zilch survive and since 1993 very many more story files have
been created with the Inform design system.

Eight Versions of the Z-machine exist, and the first byte of any "story file" (that is. any Z-
machine program) gives the Version number it must be interpreted under.

Standardisation

The opcode names used in this document were agreed between 1994 and 1995 as a standard set
by Mark Howell, author of the disassembler Txd (part of the Ztools suite of utility programs),
and Graham Nelson, author of the assembly level of Inform. They do not correspond to Info-
com's unpublished opcode names.

This Standard was drawn up in November 1995, drawing on a rougher description written in
1993 and, before that, sketches of table formats by Mike Threepoint and others. It has formalised
what different interpreter writers regard as the Z-machine, guaranteeing a reliable and well-
featured platform for writers of new games. The first formal Standard was numbered 0.2, and
this is the second, containing some corrections and clarifications but also two new features. The
following changes are worth noting:

Support for the Unicode character set has been added, introducing a new table and two new op-
codes. S3 has been rewritten and there are also changes to S7 and S10, as well as the addition of
the opcodes to S14 and S15.

S8.8.3.1, on window attributes in Version 6, has been rewritten with extensive corrections.
S7.1.2.1.1 requires a new feature: handling nested usages of output stream 3.

It is now explicit that text buffering never applies to the upper window in Versions 3 to 5. (In
Standard 0.2 the rules allowed text buffering in Version 4 under some conditions.)

An optional operand (never used and not useful) has been removed from the opcode set_font. An
optional operand, discovered by Mark Knibbs, has however been added to the Version 6 form of
set_colour.

It is now defined that the input character codes for return and delete are 13 and 8 respectively.
(10 and 127 have been suggested as alternatives in the past).

4

The fixed-pitch font flag now survives restarts and restores, like the transcription flag.

Also, the "character set table" is now called the "alphabet table" (for clarity) and the "mouse data
table" has been renamed the "header extension table.”

A companion document to this one, by Martin Frost, defines a standard format called Quetzal
for saved-game files. Standard interpreters are not required to use Quetzal, since choice of
saved-game format does not affect Z-Machine behaviour, but interpreter-writers are strongly en-
couraged to consider it.

Andrew Plotkin is currently (June 1997) drafting a standard format called Blorb for a "re-
sources’ file to accompany or encapsulate a Z-machine game, neatly packaging up sound and
graphics in modern formats. Again, since the Z-Machine has no formal knowledge of the means
of storage of sound or graphics, this document does not include Andrew's. A Standard Version-6
interpreter need not provide for Blorb.

So what is" standard" ?

To cal itself "Standard"”, an interpreter should (as far as anyone knows) obey this document ex-
actly for every Version of the Z-machine it claims to interpret. Interpreters need not provide op-
tional features suggested in the "remarks' sections, and need not make their source code public.
Each edition of this document has a Revision number, somewhat like the JFIF identification
number used by the JPEG standard. A standard interpreter should communicate its revision
number in three ways.

To someone downloading it from an FTP site or bulletin board: by including it in its filename.

To the player: for instance by means of an "information™ option on a menu, or in an initialisation
sequence.

To the game: by writing it into bytes in the header which were always left zero before this stan-
dard was devised (see S11). A game compiled with Inform library 5/12 or later prints the revi-
sion number in its banner (if thisisn't 0.0).

Few arbitrary choices have been made in writing this document. Where Infocom's own shipped
interpreters disagree, or contain manifest bugs, it has usually been possible to decide which was
"correct”. Elsewhere, minimum levels of performance have been invented where necessary. (For
example, a minimum call-stack size is needed for programmers to be sure of what level of recur-
sionis safe.)

Those few paragraphs which genuinely extend the Infocom format are marked ***. In any event,
Infocom's original shipped interpreters do not conform to this standard document, because of
bugs or because of dight variations between the Inform output format and Infocom's.

Notation

Hexadecimal numbers are written with an initia dollar, as in $ff, while binary numbers are writ-
ten with a double-dollar as in $$11011, according to Inform conventions. The bits in a byte are
numbered O to 7, O being the least significant and the top bit, 7, the most.

Story files are mechanically best identified by their release number and serial code, which are
written into the header information at the bottom of Z-machine memory. The release number can
be anything between 0 and 65535 but is usually between 1 and 100. The seria code can consist

5

of any six textual characters but is usually the date of compilation, arranged YYMMDD: thus
970619 refers to June 19th, 1997.

Paul David Doherty, in his extensive investigations into Infocom's released games, introduced
the notation

Rel ease nunber. Seri al code

to identify particular story files. for example the first production copy of 'Enchanter’ is
10.830810. This notation is used throughout the Standard when individual Infocom files need to
be referred to.

Where are all thegrammar tables?

The Z-machine has some lexical acuity but it doesn't contain a full parser: it's like a computer
without an operating system. A game program has to contain its own parser and the tables this
uses are not part of the formal Z-machine specification. (Many Infocom games have similar
parsing table formats simply because, until Version 6, they used an evolving version of the 'Zork
I" parser. A quite different parser was used in Version 6.) Inform's parsing table formats are
documented in the Inform Technical Manual. For the usual format of Infocom's parsing tables,
see the Ztools utility Infodump.

Acknowledgements

There is an obvious resemblance between an unreadable script and a secret code; similar methods can be
employed to break both. But the differences must not be overlooked. The code is deliberately designed
to baffle the investigator; the script is only puzzling by accident.

John Chadwick, The Decipherment of Linear B

The Z-machine was originally devised by Joel Berez and Marc Blank in 1979. Marc Blank made
most of the Version 4 extensions, and Version 5 was created by Dave Lebling (with contribu-
tions from others including Brian Moriarty, Duncan Blanchard and Linde Dynneson). Version 6
was largely the work of Tim Anderson and Dave Lebling.

In the reverse direction, decipherment is mostly due to the InfoTaskForce (David Beazley,
George Janczuk, Peter Lisle, Russell Hoare and Chris Tham), Matthias Pfaller, Mike Threepoint,
Mark Howell, Paul David Doherty and Stefan Jokisch. Only a few of the pieces in the jigsaw
were placed by myself.

| gratefully acknowledge the help of Paul David Doherty and Mark Howell, who each read drafts
of this paper and sent back detailed corrections; also, of Stefan Jokisch and Marnix Klooster who
have put a great deal of work into the fine detail of the specification; and of all those who com-
mented on the circulated draft. Mistakes and misunderstandings remain my own.

Graham Nelson
15 November 1995

Kevin Bracey and Stefan Jokisch discovered most of the mistakes in Standard 0.2, in developing
the first Version 6 interpreters of the modern age: Zip2000 and Frotz. Matthew Russotto and
Mark Knibbs supplied helpful information about Infocom's own Version 6 interpreters. Stefan
also kindly read and commented on numerous drafts of the present revision. Finaly, discussion
about this document was gregtly assisted by the Z-Machine Mailing List, organised by Marnix
Klooster.

Graham Nelson
22 June 1997

Overview of Z-machine architecture

Local
<«—p| Variables
Processor
Temporary
<
I |
1
1
1
! Stack
PC R .
1
1

Hardware accessed indirectly

Memory

The Z-machine is a design for an imaginary computer: Z is for 'Zork’, the adventure game it was
originally designed to play. Like any computer, it stores its information (mostly) in an array of
variables numbered from O up to some large number: thisis called its memory. A stock of some
240 memory locations are set aside for easy and quick access, and these are called global vari-
ables (since they are available to any part of the program which is running, at any time).

The two important pieces of information not stored in memory are the program counter (PC)
and the stack. The Z-machine continuously runs a program by getting the instruction stored at
position PC in memory, acting on the instruction and then moving the PC forward to the next.
Theinstruction set of the Z-machine (the range of possible actions and how they are encoded as
numbers in memory) occupies much of this document.

Programs are divided into routines: the Z-machine is always executing a particular routine, the
one which the PC currently points inside. However, some instructions cause the Z-machine to
call a new routine and then to return where the first routine left off. The Z-machine therefore
needs to remember details of where to go back, and it stores these on the stack.

The stack is a second bank of memory, quite separate from the main one, which has variable
size: initialy it is empty. From time to time values are added to, or taken from, the top of the
stack. As well as being used to keep return details, the stack is also used to store local variables
(values needed only by a particular routine) and, for short periods only, the partial results of cal-
culations.

Thus, whereas most physical processors (e.g. Z80 or 6502) have a number of quick-access vari-
ables outside of memory (called "registers’) and a stack inside memory, the Z-machine has the
reverse: it has global variables inside memory and a stack kept outside.

There is no access to hardware except by executing particular Z-machine instructions. For in-
stance, read and read_char allow use of the keyboard; print and draw_picture allow use of the
screen. The screen's image is not stored anywhere in memory. Conversely, hardware can cause
the Z-machine to interrupt, that is, to make a spontaneous call to a particular routine, interrupt-
ing what it was previously working on. This happens only if the program has previously re-
quested it: for example, by setting a sound effect playing and asking for a routine to be called
when it finishes; or by asking for an interrupt if thirty seconds pass while the player is thinking
what to type.

This ssimple architecture is overlaid by a number of specia structures which the Z-machine
maintains inside memory. There are around a dozen of these but the most important are:

the header, at the bottom of memory, giving details about the program and a map of the rest
of memory;

the dictionary, alist of English words which the program expects that it might want to read
from the keyboard;

the object tree, an arrangement of chunks of memory called objects.

The Z-machineis primarily used for adventure games, where the dictionary holds names of items
and verbs that the player might type, and the objects tend to be the places and artifacts which
make up the game. Each object in the tree may have a parent, a sibling and a child. For in-
stance, in the start position of "Zork I":

West of House

You are standing in an open field west of a white house, with a boarded front door. There is a
small mailbox here.

>open mailbox

Opening the small mailbox reveals a ledflet.

At this point (part of) the game's object tree looks like this:

[41]
[68] "West of House"
[21] "you"
[239] "snall mail box"
. [80] "leaflet"
[127] "door™"

Note that objects are numbered from 1 upward. (Object 41 is a dummy object being used by the
game to contain al the "rooms" or locations, and it has many more children besides object 68.)
The parent of the player is "West of House", whose parent is 41, which has no parent. The sib-

9

ling of the player is the mailbox; the child of the mailbox is the leaflet; the sibling of the mailbox
is the door and so on.

Objects are bundled-up collections of variables, which come in two kinds: attributes and prop-
erties. Attributes are smply flags, that is, they can be set or unset, but have no numerical value.
Properties hold numbers, which may in turn represent pieces of text or other information. For in-
stance, one of the properties of the mailbox object above contains the information that the Eng-
lish word "mailbox" refersto it. One of the attributes of the mailbox object is set to indicate that
it's a container, whereas the same attribute for the leaflet object is unset. Here is a breakdown of
the state of the mailbox:

239. Attributes: 30, 34
Parent object: 68 Sibling object: 127 Child object: 80
Property address: 2b53
Description: "small rmail box"
Properti es:
[49] 00 Oa
[46] 54 bf 4a c3
[45] 3e c1
[44] 5b 1c

So the only set attributes are 30 and 34: all others are unset. Values are given for properties 44,
45, 46 and 49. The Z-machine itself does not know or care what this information means: that is
for the program to sort out.

Asafinal example, hereis part of one of the routinesin 'Zork I":

| 0006: print_ret "Suicide is not the answer."
[0007: je g57 #84 ~1 0008

je 948 #15 ~rfal se

print_ret "Why don't you just walk |ike normal people?”
[0008: je g57 #63 ~| 0009

print_ret "How romantic!"
| 0009: je g57 #3b ~rfal se

get _par ent "mrror" localO

get _par ent "mrror" sp

je g6b 1 ocal 0 sp ~1 0010

print_ret "Your image in the mrror |ooks tired."
[0010: print_ret "That's difficult unless your eyes are

prehensile.™

Z-machine programs are stored on disc, or archived on the Internet, in what are called story files.
(Since they were introduced to hold interactive stories.) A story file consists of a snapshot of
main memory only. The processor begins to run a story file by starting with an empty stack and a
PC value set according to some information in the story file's header. Note that the story file has
to be set up with many of the structures in memory, such as the dictionary and the object tree, al-
ready created and with sensible contents.

The first byte of any story file, and so the byte at memory address O, always contains the version
number of the Z-machine to be used. The design was evolutionary over a period of a decade: as

10

version number increases, the instruction set grows and tables are reformatted to allow more
room for larger games. All of Infocom's games can be played using versions between 3 (the ma-
jority) and 6. Games compiled by Inform in the 1990s mainly use versions 5 or 8.

11

1. The memory map

1.1 Regionsof memory

The memory map of the Z-machine is an array of bytes with "byte addresses’ running from O
upwards. This is divided into three regions. "dynamic", "static" and "high". Dynamic memory
begins from byte address $00000 and runs up to the byte before the byte address stored in the
word at $0e in the header. (Dynamic memory must contain at least 64 bytes.) Static memory
follows immediately on. Its extent is not defined in the header (or anywhere else), though it must
end by the last byte of the story file or by byte address $0ffff (whichever is lower). High memory
begins at the "high memory mark” (the byte address stored in the word at $04 in the header) and
continues to the end of the story file. The bottom of high memory may overlap with the top of
static memory (but not with dynamic memory).

111

Dynamic memory can be read or written to (either directly, using loadb, loadw, storeb and
storew, or indirectly with opcodes such asinsert_obj and remove_obj).

1111

By tradition, the first 64 bytes are known as the "header". The contents of this are given later but
note that games are not permitted to alter many bitsinside it.

1112

It islega for games to alter any of the tables stored in dynamic memory above the header, pro-
vided they leave the tablesin legal states.

112

Static memory can be read using the opcodes loadb and loadw. It isillegal for a game to attempt
to write to static memory.

113

Except for its (possible) overlap with static memory, high memory cannot be directly accessed at
all by a game program. It contains routines, which can be called, and strings, which can be
printed using print_paddr.

114

The maximum permitted length of a story file depends on the Version, as follows:
V1- 3 V4-5 V6 V7 V8
128 256 512 320 512

12

1.2 Addresses

There are three kinds of address in the Z-machine, al of which can be stored in a 2-byte number:
byte addresses, word addresses and packed addresses.

121
A byte address specifies a byte in memory in the range 0 up to the last byte of static memory.

122

A word address specifies an even address in the bottom 128K of memory (by giving the address
divided by 2). (Word addresses are used only in the abbreviations table.)

1.2.3

*** A packed address specifies where aroutine or string begins in high memory. Given a packed
address P, the formulato obtain the corresponding byte address B is:

2P Versions 1, 2 and 3

4P Versions 4 and 5

4P + 8R O Versions 6 and 7, for routine calls
4P + 8S O Versions 6 and 7, for print_paddr

8P Version 8

R O and S O are the routine and strings offsets (specified in the header as words at $28 and $2a,
respectively).

An example memory map of a small game

Dynamic 00000 header

00040 abbreviation strings
00042 abbreviation table
00102 property defaults
00140 objects

002f 0 object descriptions and properties
006e3 global variables
008c3 arays

Static 00b48 grammar table
010a7 actions table
01153 preactions table
01201 adjectivestable
0124d dictionary

High 0la0a Z-code

05d56 static strings
06ae6 end of file

13

Remarks

Inform never compiles any overlap between static and high memory (it places al data tables in
dynamic memory). However, many Infocom games group tables of static data just above the
high memory mark, before routines begin; some, such as 'Nord 'n' Bert...", interleave static data
between routines, so that static memory actually overlaps code; and a few, such as 'Seastalker'
release 15, even contain routines placed below the high memory mark. (The original idea behind
the high memory mark was that everything below it should be stored in the interpreter's RAM,
while what was above could reasonably be kept in "virtual memory", i.e., loaded off disc as
needed.)

Note that the total of dynamic plus static memory must not exceed 64K. (In fact, 64K minus 2
bytes.) This is the most serious limitation on the Z-machine (though it has not yet been reached
by anyone).

Throughout the specification, Versions 7 and 8 are identical to Version 5 except as stated at 1.1.4
and 1.2.3 above.

14

2. Numbers and arithmetic

2.1 Numbers

In the Z-machine, numbers are usually stored in 2 bytes (in the form most-significant-byte first,
then least-significant) and hold any value in the range $0000 to $ffff (0 to 65535 decimal).

2.2 Signed Operations

These values are sometimes regarded as signed, in the range $-32768% to 32767. In effect $-n$
is stored as $65536-n$ and so the top bit is the sign bit.

221

The operations of numerical comparison, multiplication, addition, subtraction, division, remain-
der-after-division and printing of numbers are signed; bitwise operations are unsigned. (In par-
ticular, sSince comparison is signed, it is unsafe to compare two addresses using simply jl and jg.)

2.3 Arithmeticerrors
Arithmetic errors:

231

It isillegal to divide by O (or to ask for remainder after division by 0) and an interpreter should
halt with an error message if this occurs.

232

Formally it has never been specified what the result of an out-of-range calculation should be. The
author suggests that the result should be reduced modulo $10000.

2.4 Random number generator

The Z-machine needs a random number generator which at any time has one of two states, "ran-
dom" and "predictable”. When the game starts or restarts the state becomes "random”. Ideally the
generator should not produce identical sequences after each restart.

241

When "random”, it must be capable of generating a uniformly random integer in the range 1 <= x
<=n, for any value 1 <= n <= 32767. Any method can be used for this (for instance, using the
host computer's clock time in milliseconds). The uniformity of randomness should be optimised
for low values of n (say, up to 100 or so) and it is especially important to avoid regular patterns
appearing in remainders after division (most crudely, being alternately odd and even).

15

24.2

The generator is switched into "predictable” state with a seed value. On any two occasions when
the same seed is sown, identical sequences of values must result (for an indefinite period) until
the generator is switched back into "random” mode. The generator should cope well with very
low seed values, such as 10, and should not depend on the seed containing many non-zero bits.

243

The interpreter is permitted to switch between these states on request of the player. (Thisis use-
ful for testing purposes.)

Remarks

It is dangerous to rely on the ANSI C random number routines, as some implementations of
these are very poor. This has made some games (in particular, 'Balances) unwinnable on some
Unix ports of Zip.

The author suggests the following agorithm:

1. In "random" mode, the generator uses the host computer's clock to obtain a random sequence
of bits.

2. In "predictable” mode, the generator should store the seed value S. If S< 1000 it should then
internally generate

1,23 ..,5123,..,S1,..

so that random n produces the next entry in this sequence modulo n. If S>= 1000 then Sis used
as aseed in a standard seeded random-number generator.

(The rising sequence is useful for testing, since it will produce all possible values in sequence.
On the other hand, a seeded but fairly random generator is useful for testing entire scripts.)

Note that version 0.2 of this standard mistakenly asserted that divison and remainder are un-
signed, a myth deriving from a bug in Zip. Infocom's interpreters do sign division (thisis relied
on when calculating pizza cooking times for the microwave oven in "The Lurking Horror'). Here
are some correct Z-machine calculations:
-11/ 2 = -5 -11 / -2
-13 %5 -3 13 % -5

11/ -2

5 -5
3 -13 % -5

-3

16

3. How text and characters are encoded

This technique is similar to the five-bit Baudot code, which was used by early Teletypes before ASCI|
was invented.

Marc S. Blank and S. W. Galley, How to Fit a Large Program Into a Small Machine

3.1

Z-machine text is a sequence of ZSCII character codes (ZSClI is a system similar to ASCII: see
S 3.8 below). These ZSClI values are encoded into memory using a string of Z-characters. The
process of converting between Z-characters and ZSCII valuesis givenin SS 3.2 to 3.7 below.

3.2

Text in memory consists of a sequence of 2-byte words. Each word is divided into three 5-bit 'Z-
characters, plus 1 bit left over, arranged as

first byte second byte
7]6|s|4a]3]2]1]o|7]6]5]4|3]2]1]0
bit| first Z-character | second Z-character | third Z-character

The bit is set only on the last 2-byte word of the text, and so marks the end.

321

There are three 'aphabets, A0 (lower case), Al (upper case) and A2 (punctuation) and during
printing one of these is current at any given time. Initially AO is current. The meaning of a Z-
character may depend on which aphabet is current.

3.2.2

In Versions 1 and 2, the current alphabet can be any of the three. The Z-characters 2 and 3 are
called 'shift' characters and change the alphabet for the next character only. The new aphabet
depends on what the current oneis:

from AO from Al from A2
Z-char 2 Al A2 AO
Z-char 3 A2 AO Al

Z-characters 4 and 5 permanently change alphabet, according to the same table, and are called
'shift lock' characters.

323

In Versions 3 and later, the current alphabet is always AO unless changed for 1 character only: Z-
characters 4 and 5 are shift characters. Thus 4 means "the next character isin A1" and 5 means
"the nextisin A2". There are no shift lock characters.

17

324
An indefinite sequence of shift or shift lock charactersislegal (but prints nothing).

3.3

In Versions 3 and later, Z-characters 1, 2 and 3 represent abbreviations, sometimes also called
'synonyms (for traditional reasons): the next Z-character indicates which abbreviation string to
print. If z is the first Z-character (1, 2 or 3) and x the subsequent one, then the interpreter must
look up entry 32(z-1)+x in the abbreviations table and print the string at that word address. In
Version 2, Z-character 1 hasthis effect (but 2 and 3 do not, so there are only 32 abbreviations).

331

Abbreviation string-printing follows all the rules of this section except that an abbreviation string
must not itself use abbreviations and must not end with an incomplete multi-Z-character con-
struction (see S 3.6.1 below).

34

Z-character 6 from A2 means that the two subsequent Z-characters specify a ten-bit ZSCII char-
acter code: the next Z-character gives the top 5 bits and the one after the bottom 5.

35
The remaining Z-characters are translated into ZSCl| character codes using the "alphabet table".

351
The Z-character O is printed as a space (ZSCl1 32).

35.2
InVersion 1, Z-character 1 is printed as a new-line (ZSClI 13).

353

In Versions 2 to 4, the alphabet table for converting Z-characters into ZSCI character codesis as
follows:

6/ 7,8/ 9 a bjc/d e f| 01 2 3 45/ 6 7 89 a/bjc|jd e|f
A0 a bjc/de fighji|lj kil mnop qris/itiuv wixy|z
Al AIBIC DE FGHI|J KILILMNOPOQR| ST UV WX Y| Z
A2 N0[1123 4567 89 .|, 2?2 _|# [\ - (1)

(Character 6 in A2 is printed as a space here, but is not trandated using the alphabet table: see S
3.4 above. Character 7 in A2, written here as a circumflex », is a new-line.) For example, in a-
phabet Al the Z-character 12 istrandated as a capital G (ZSCII character code 71).

18

354

Version 1 has a dlightly different A2 row in its aphabet table (new-line is not needed, making
room for the < character):

6/ 7/ 8 9 a/b|jc|d/ el f|0]1/ 2 3/ 4/ 5/ 6|78 9 a/ bjc/d e

A2 0 112 3/ 45/6/ 789 .|,|!]? gl NV < - (

355

In Versions 5 and later, the interpreter should look at the word at $34 in the header. If this is
zero, then the alphabet table drawn out in S 3.5.3 continues in use. Otherwise it is interpreted as
the byte address of an alphabet table specific to this story file.

3551

Such an aphabet table consists of 78 bytes arranged as 3 blocks of 26 ZSClI values, trandating
Z-characters 6 to 31 for aphabets A0, A1 and A2. Z-characters 6 and 7 of A2, however, are still
trandlated as escape and newline codes (as above).

3.6

Since the end-bit only comes up once every three Z-characters, a string may have to be 'padded
out" with null values. This is conventionally achieved with a sequence of 5's, though a sequence
of (for example) 4's would work equally well.

36.1

It islegal for the string to end while a multi-Z-character construction is incomplete: for instance,
after only the top half of an ASCII value has been given. The partia construction is simply ig-
nored. (This can happen in printing dictionary words which have been guillotined to the diction-
ary resolution of 6 or 9 Z-characters.)

3.7

When an interpreter is encrypting typed-in text to match against dictionary words, the following
restrictions apply. Text should be converted to lower case (as a result A1 will not be needed un-
less the game provides its own alphabet table). Abbreviations may not be used. The pad charac-
ter, if needed, must be 5. The total string length must be 6 Z-characters (in Versions 1 to 3) or 9
(Versions 4 and later): any multi-Z-character constructions should be left incomplete (rather than
omitted) if there's no room to finish them. For example, "i" is encrypted as:

14, 5, 5, 5, 5, 5, 5 5, 5

$48a5 $14a5 $94a5
3.8

The character set of the Z-machine is called ZSClI (Zork Standard Code for Information Inter-
change; pronounced to rhyme with "xyzzy"). ZSCIlI codes are 10-bit unsigned values between 0

19

and 1023. Story files may only legally use the values which are defined below. Note that some
values are defined only for input and some only for output.

Table 2: summary of the ZSCI I rules

0 null Output

1-7

8 delete Input

9 tab (V6) Output

10

11 sentence space (V6) Output

12

13 newline I nput/Output
14-26

27 escape Input

28-31

32-126 standard ASCI| I nput/Output
127-128

129-132 cursor u/d/I/r Input
133-144 function keys 1 to f12 Input
145-154 keypad 0to 9 Input
155-251 extra characters I nput/Output
252 menu click (V6) Input

253 double-click (V6) Input

254 single-click Input
255-1023

3.8.1
The codes 256 to 1023 are undefined, so that for al practical purposes ZSCl|I is an 8-bit unsigned
code.

3.8.2

The codes 0 to 31 are undefined except as follows:

3821

ZSCII code O ("null™) is defined for output but has no effect in any output stream. (It is also used
as a value meaning "no character" when reporting terminating character codes, but is not for-
mally defined for input.)

20

3822
ZSCII code 8 ("delete") is defined for input only.

3823

ZSCII code 9 ("tab") is defined for output in Version 6 only. At the start of a screen line this
should print a paragraph indentation suitable for the font being used: if it is printed in the middle
of a screen line, it should be converted to a space (Infocom's own interpreters do not do this,
however).

3824

ZSCII code 11 ("sentence space”) is defined for output in Version 6 only. This should be printed
as a suitable gap between two sentences (in the same way that typographers normally place
larger spaces after the full stops ending sentences than after words or commas).

3825
ZSCII code 13 ("carriage return”) is defined for input and outpuit.

3.8.26
ZSCII code 27 ("escape” or "break") is defined for input only.

383

ZSCII codes between 32 ("space") and 126 ("tilde") are defined for input and output, and agree
with standard ASCI1 (as well as al of the 1SO 8859 character sets and Unicode). Specifically:

0/1/2/3/4|5|6/7/8/9|a/bjcd|e f|0/1/2/3/456|7/ 89 albjcde|f
$20 DI T# 18 %& " |(])|[*|+],|-.]/]0/1/2/3/4|5/6/7|89]:;|<|=/>7?
$40 |@A B|C/D|E/FIGH|l|JKLMNOPQRISTUVWXYZI[NIII*_
$60 ‘“la/bjci/d|e|f|g/h|i|j k|l I mnjo|p|g r|s|tjulviwXx|y z/{]|]|] |} ~

Note that code $23 (35 decimal) is a hash mark, not a pound sign. (Code $7c (124 decimal) is a
vertical stroke which is shown as! here for typesetting reasons.*)

3831
ZSCII codes 127 ("delete” in some forms of ASCII) and 128 are undefined.

384

ZSCII codes 129 to 154 are defined for input only:
129: cursor up 130: cursor down 131: cursor left 132: cursor right
133: f1 134: f2 Ce 144: 12

* Compilers note: For this edition the ! was replaced with the (correct) vertical stroke |.
21

145: keypad O 146: keypad 1 154: keypad 9

385

The block of codes between 155 and 251 are the "extra characters’ and are used differently by
different story files. Some will need accented Latin characters (such as French E-acute), others
unusual punctuation (Spanish question mark), others new alphabets (Cyrillic or Hebrew); till
others may want dingbat characters, mathematical or musical symbols, and so on.

3851

*** To define which characters are required, the Unicode (or 1SO 10646-1) character set is used:
characters are specified by unsigned 16-bit codes. These values agree with 1SO 8859 Latin-1 in
the range 0 to 255, and with ASCII and ZSCII in the range 32 to 126. The Unicode standard
leaves a range of values, the Private Use Area, free: however, an Internet group called the Con-
Script Unicode Registry is organising a standard mapping of invented scripts (such as Klingon,
or Tolkien's Elvish) into the Private Use Area, and this should be considered part of the Unicode
standard for Z-machine purposes.

3852

*** The story file chooses its stock of extra characters with a"Unicode trandation table" as fol-
lows. Under Versions 1 to 4, the "default table" is always used (see below). In Version 5 or later,
if Word 3 of the header extension table is present and non-zero then it is interpreted as the byte
address of the Unicode translation table. If Word 3 is absent or zero, the default table is used.

3.85.21
The table consists of one byte giving a number N, followed by N two-byte words.

38522

This indicates that ZSCII characters 155 to $155+N-1$ are defined for both input and outpuit.
(It's possible for N to be zero, leaving the whole range 155 to 251 undefined.)

38523

The words in the table give Unicode character codes for each of the ZSCII characters 155 to
$155+N-1$in turn.

3853
The default tableis as shown in Table 1.

3854

The defined extra characters are entirely normal ZSCII characters. They can appear in a story
file's aphabet table, in an array created by print stream 3 and so on.

22

38541

*** The interpreter is required to be able to print representations of every defined Unicode char-
acter under $0100 (i.e. of every defined SO 8859-1 Latinl character). If no suitable letter forms
are available, textual equivaents may be used (such as"ss" in place of German sharp "'s").

38542

Normally, and where sensibly possible, al punctuation and letter characters in 1SO 8859-1
Latinl should be readable from the interpreter's keyboard. (However, some interpreters may
want to provide alternative keyboard mappings, or to run in a different 1SO 8859 set: Cyrillic, for
example.)

38543

*** An interpreter is not required to have suitable letter-forms for printing Unicode characters
$0100 to $FFFF. (It may, if it chooses, allow the user to configure certain fonts for certain
Unicode ranges; but thisis not required.) If a Unicode character must be printed which an inter-
preter has no letter-form for, a question mark should be printed instead.

3.8.6
ZSCII codes 252 to 254 are defined for input only:
252: menu click 253: mouse double-click 254: mouse single-click

Menu clicks are available only in Version 6. In Versions 5 and later it is recommended that an
interpreter should only send code 254, whether the mouse is clicked once or twice.

3.8.7

ZSCIl code 255 is undefined. (This value is needed in the "terminating characters table" as a
wildcard, indicating "any Input-only character with code 128 or above." However, it cannot itself
be printed or read from the keyboard.)

Table 1: default Unicode tranglations (see S 3.8.5.3)

155 | 0ed adiaeress ae 191 0e2 a-circumflex a
156 | Of6 o-diaeresis oe 192 Oea e-circumflex e
157 Ofc u-diaeresis ue 193 Oee i-circumflex [

158 | Oc4 A-diaeresis Ae 194 0of4 o-circumflex o]
159 0d6 O-diaeresis Oe 195 Ofb u-circumflex u
160 | Odc U-diaeresis Ue 196 0c2 A-circumflex A
161 Odf sz-ligature Sss 197 Oca E-circumflex E
162 Obb quotation >>or" 198 Oce I-circumflex I

163 | Oab marks <<or" 199 0d4 O-circumflex @)
164 | Oeb e-diaeresis e 200 Odb U-circumflex U

23

165 | Oef i-diaeresis [201 0e5 aring a
166 | Off y-diaeresis y 202 0c5 A-ring A
167 Ocb E-diaeresis E 203 0f8 o-slash o]
168 | Ocf |-digeresis I 204 0d8 O-dash o
169 Oel a-acute a 205 0e3 atilde a
170 | 0e9 e-acute e 206 of1 n-tilde n
171 Oed i-acute [207 0f5 o-tilde o}
172 0f3 o-acute o] 208 0c3 A-tilde A
173 | Ofa u-acute u 209 Od1 N-tilde N
174 | Ofd y-acute y 210 0d5 O-tilde @)
175 |0Ocl A-acute A 211 0e6 ae-ligature ae
176 | 0c9 E-acute E 212 Oc6 AE-ligature AE
177 Ocd I-acute I 213 Oe7 c-cedilla c
178 | 0d3 O-acute @) 214 Oc7 C-cedilla C
179 Oda U-acute U 215 Ofe Icelandic thorn th
180 | Odd Y -acute Y 216 0f0 Icelandic eth th
181 0e0 agrave a 217 Ode Icelandic Thorn Th
182 0e8 e-grave e 218 0d0 Icelandic Eth Th
183 | Oec i-grave [219 0a3 pound symbol L
184 | 0Of2 o-grave o] 220 153 oe-ligature oe
185 | 0f9 u-grave u 221 152 OE-ligature OE
186 0cO A-grave A 222 Oal inverted ! !
187 Oc8 E-grave E 223 Obf inverted ? ?
188 Occ I-grave I
189 0d2 O-grave @)
190 | 0d9 U-grave U N =69
Remarks

In practice the text compression factor is not realy very good: for instance, 155000 characters of
text squashes into 99000 bytes. (Text usually accounts for about 75\% of a story file.) Encoding
does at least encrypt the text so that casual browsers can't read it. Well-chosen abbreviations will
reduce total story file size by 10% or so.

The German trandlation of "Zork I' uses an alphabet table to make accented letters (from the stan-
dard extra characters set) efficient in dictionary words. In Version 6, 'Shogun' also uses an alpha-
bet table.

Unicode trand ation tables are new in Standard 1.0: in Standard 0.2, the extra characters were al-
ways mapped using the default Unicode trandlation table.

24

Note that if arandom stretch of memory is accidentally printed as a string (due to an error in the
story file), illegal ZSClI codes may well be printed using the 4-Z-character escape sequence. It's
helpful for interpreters to filter out any such illegal codes so that the resulting on-screen mess
will not cause trouble for the terminal (e.g. by causing the interpreter to print ASCII 12, clear
screen, or 7, bell sound).

The continental European quotation marks << and >> should have spacing which looks sensible
either in French style <<Merci!>> or in German style >>Dankel <<.

Ideally, an interpreter should be able to read time delays (for timed input) from stream 1 (i.e.,
from a script file). See the remarksin S 7.

The 'Beyond Zork' story file is capable of receiving both mouse-click codes (253 and 254), list-
ing both in its terminating characters table and treating them equally.

The extant Infocom gamesin Versions 4 and 5 use the control characters 1 to 31 only as follows:
they all accept 10 or 13 as equivalent, except that 'Bureaucracy' will only accept 13. 'Bureauc-
racy' needs either 127 or 8 to be a delete code. No other codes are used.

Curiously, 'Nord 'n' Bert Couldn't Make Head Nor Tail Of It' and 'A Mind Forever Voyaging'
allow some letter characters to be typed in with the top bit set. That is, if reading an A, they
would recognise 65 or 91 (upper or lower case) and also 193 or 219. Matthew Russotto suggests
this was an accommodation for the Apple Il, whose keyboard primitives returned the last key
pressed in the bottom 7 bits of a byte, plus a top bit flag indicating whether or not the keyboard
had been hit since last time.

25

4. How instructions are encoded

We do but teach bloody instructions
Which, being taught, return to plague th' inventor

Shakespeare, Macbeth

4.1 Instructions
A single Z-machine instruction consists of the following sections (and in the order shown):

Opcode 1 or 2 bytes

(Types of operands) 1 or 2 bytes: 4 or 8 2-bit fields

Oper ands Between 0 and 8 of these: each 1 or 2 bytes
(Store variabl e) 1 byte

(Branch offset) 1 or 2 bytes

(Text to print) An encoded string (of unlimted |ength)

Bracketed sections are not present in all opcodes. (A few opcodes take both "store" and
"branch".)

4.2 Operand types
There are four 'types of operand. These are often specified by a number stored in 2 binary digits:
$$00 Large constant (0 to 65535) 2 bytes

$$01 Smal | constant (0 to 255) 1 byte

$$10 Vari abl e 1 byte

$$11 Onritted al toget her 0 bytes
42.1

Large constants, like all 2-byte words of data in the Z-machine, are stored with most significant
byte first (e.g. $2478 is stored as $24 followed by $78). A ‘'large constant’' may in fact be a small
number.

4.2.2

Variable number $00 refers to the top of the stack, $01 to $0f mean the local variables of the cur-
rent routine and $10 to $ff mean the global variables. It isillegal to refer to local variables which
do not exist for the current routine (there may even be none).

423

The type 'Variable' really means "variable by value". Some instructions take as an operand a
"variable by reference": for instance, inc has one operand, the reference number of a variable to
increment. This operand usually has type 'Small constant’ (and Inform automatically assembles a
line like @inc turns by writing the operand turns as a small constant with value the reference
number of the variable turns).

26

4.3 Form and operand count

Each instruction has aform (long, short, extended or variable) and an operand count (OOP, 10P,
20P or VAR). If the top two bits of the opcode are $$11 the form is variable; if $$10, the form is
short. If the opcode is 190 ($BE in hexadecimal) and the version is 5 or later, the form is "ex-
tended". Otherwise, the form is"long".

431

In short form, bits 4 and 5 of the opcode byte give an operand type as above. If thisis $11 then
the operand count is OOP; otherwise, 10P. In either case the opcode number is given in the bot-
tom 4 hits.

4.3.2
In long form the operand count is always 20P. The opcode number is given in the bottom 5 bits.

433

In variable form, if bit 5 is O then the count is 20P; if it is 1, then the count is VAR. The opcode
number is given in the bottom 5 bits.

4.3.4

In extended form, the operand count is VAR. The opcode number is given in a second opcode
byte.

4.4 Specifying operand types
Next, the types of the operands are specified.

44.1
In short form, bits 4 and 5 of the opcode give the type.

4.4.2

In long form, bit 6 of the opcode gives the type of the first operand, bit 5 of the second. A value
of 0 means a small constant and 1 means a variable. (If a 20P instruction needs a large constant
as operand, then it should be assembled in variable rather than long form.)

4.4.3

In variable or extended forms, a byte of 4 operand types is given next. This contains 4 2-bit
fields: bits 6 and 7 are the first field, bits O and 1 the fourth. The values are operand types as
above. Once one type has been given as 'omitted, all subsequent ones must be. Example:
$$00101111 means large constant followed by variable (and no third or fourth opcode).

27

443.1

In the specia case of the "double variable” VAR opcodes call_vs2 and call_vn2 (opcode num-
bers 12 and 26), a second byte of typesis given, containing the types for the next four operands.

4.5 Operands

The operands are given next. Operand counts of 0OP, 10P or 20P require O, 1 or 2 operands to
be given, respectively. If the count is VAR, there must be as many operands as there were types
other than ‘omitted'.

451

Note that only call_vs2 and call_vn2 can have more than 4 operands, and no instruction can
have more than 8.

4.6 Stores

"Store" instructions return a value: e.g., mul multiplies its two operands together. Such instruc-
tions must be followed by a single byte giving the variable number of where to put the result.

4.7 Branches

Instructions which test a condition are called "branch" instructions. The branch information is
stored in one or two bytes, indicating what to do with the result of the test. If bit 7 of the first
byte is 0, a branch occurs when the condition was falsg; if 1, then branch ison true. If bit 6 is set,
then the branch occupies 1 byte only, and the "offset” is in the range O to 63, given in the bottom
6 bits. If bit 6 is clear, then the offset is a signed 14-bit number given in bits O to 5 of the first
byte followed by all 8 of the second.

4.7.1

An offset of 0 means "return false from the current routine”", and 1 means "return true from the
current routine".

4.7.2

Otherwise, a branch moves execution to the instruction at address
Address after branch data + Ofset - 2.

4.8 Text opcodes

Two opcodes, print and print_ret, are followed by a text string. This is stored according to the
usual rules: in particular execution continues after the last 2-byte word of text (the one with top
bit set).

28

Remarks

Some opcodes have type VAR only because the available codes for the other types had run out;
print_char, for instance. Others, especially call, need the flexibility to have between 1 and 4 op-
erands.

The Inform assembler can assemble branches in either form, though the programmer should al-
ways use long form unless there's a good reason. Inform automatically optimises branch state-
ments so as to force as many of them as possible into short form. (This optimisation will happen
to branches written by hand in assembler as well as to branches compiled by Inform.)

The disassembler Txd numbers locals from 0 to 14 and globals from 0 to 239 in its output (cor-
responding to variable numbers 1 to 15, and 16 to 255, respectively).

The branch formula is sensible because in the natural implementation, the program counter is at
the address after the branch data when the branch takes place: thus it can be regarded as

PC = PC + Ofset - 2.

If the rule were simply "add the offset” then, since the offset couldn't be O or 1 (because of the
return-false and return-true values), we would never be able to skip past a 1-byte instruction (say,
a00P like quit), or specify the branch "don't branch at al” (sometimes useful to ignore the result
of the test altogether). Subtracting 2 means that the only effects we can't achieve are

PC=PC-1 ad PC=PC- 2

and we would never want these anyway, since they would put the program counter somewhere
back inside the same instruction, with horrid consequences.

On disassembly
Briefly, the first byte of an instruction can be decoded using the following table:

$00 -- $1f long 20P smal | constant, snmall constant
$20 -- $3f long 20P smal | constant, variable

$40 -- $5f long 20P vari able, small constant

$60 -- $7f long 20P vari abl e, variable

$80 -- $8f short 10P | ar ge const ant

$90 -- $9f short 10P snmal | const ant

$a0 -- $af short 10P vari abl e

$b0 -- $bf short ooP

except $be extended opcode given in next byte

$cO0 -- $df variable 20P (operand types in next byte)
$e0 -- $ff wvariable VAR (operand types in next byte(s))

Here is an example disassembly:

@nc_chk c 0 | abel; 05 02 00 d4
long form count 20P; opcode nunber 5; operands:
02 smal |l constant (referring to variable c)
00 smal| constant O

branch if true: 1-byte offset, 20 (since |abel is
18 bytes forward from here).

@rint "Hello. ""; b2 11 aa 46 34 16 45 9c a5
short form count O0CP.

29

literal string, Z-chars: 4 13 10 17 17 20 5 18 5 7 5 5.

@wul 1000 c -> sp; dé 2f 03 e8 02 00

vari able form count 20P; opcode nunber 22; operands:

03 e8 long constant (1000 decimal)

02 vari able c
store result to stack pointer (var nunber 00).
@all _1n Message; 8f 01 56

short form count 10P; opcode number 15; operand:
01 56 |long constant (packed address of routine)
. | abel ;

30

5. How routines are encoded

5.1 Start position

A routine is required to begin at an address in memory which can be represented by a packed ad-
dress (for instance, in Version 5 it must occur at a byte address which is divisible by 4).

5.2 Header

A routine begins with one byte indicating the number of local variables it has (between 0 and 15
inclusive).

521

In Versions 1 to 4, that number of 2-byte words follows, giving initia values for these local vari-
ables. In Versions 5 and later, the initial values are al zero.

5.3 First instruction

Execution of instructions begins from the byte after this header information. There is no formal
‘end-marker' for a routine (it is simply assumed that execution eventually results in a return tak-
ing place).

5.4 Main routine (V6)

In Version 6, thereis a"main" routine (whose packed address is stored in the word at $06 in the
header) called when the game starts up. It isillegal to return from this routine.

5.5 Initial execution point (other versions)

In all other Versions, the word at $06 contains the byte address of the first instruction to execute.
The Z-machine starts in an environment with no local variables from which, again, areturn isiil-

legal.

Remarks

Note that it is permissible for aroutine to be in dynamic memory. Marnix Klooster suggests this
might be used for compiling code at run time!

In Versions 3 and 4, Inform always stores 0 as the initial values for local variables.

Inform's "main” routine is required not to have local variables and has to be the first defined rou-
tine. Thisensuresit is in the bottom 64K of memory, asit must be (in Versions other than 6).

31

6. The game state: storage and routine calls

6.1 Saved states

The "state of play"” is defined as the following: the contents of dynamic memory; the contents of
the stack; the value of the program counter (PC), and the "routine call state" (that is, the chain of
routines which have called each other in sequence, and the values of their local variables). Note
that the routine call state, the stack and the PC must be stored outside the Z-machine memory
map, in the interpreter's private memory.

6.1.1
The entire state of play must be stored when the game is saved.

6.1.1.1
The format of a saved game file is not specified.

6.1.1.2

An internal saved game for "undo” purposes (if there is one) is not part of the state of play. This
is important: if a saved game file aso contained the internal saved game at the time of saving, it
would be impossible to undo the act of restoration. It also prevents internal saved games from
growing larger and larger as they include their predecessors.

6.1.1.3

It isillegal to save the game (either with save or save_undo) during an "interrupt routine”" (one
coming about through timed input, sound effect termination or newline interrupts). Therefore
saved games need not store information capable of restoring such a position.

6.1.2

On a"restore" or "undo” (which restores a game saved into internal memory), the entire state of
play is written back except that 'Flags 2' in the header is preserved. (This information includes
whether the game is being transcribed to printer and whether a fixed-pitch font is being used.)

6.1.2.1

Before a "restore”, an interpreter should check that the file to be used has been saved from the
same game currently being played. (See remark below.)

6.1.2.2

After a "restore” or "undo”, an interpreter should reset the header values marked Rst in the
header table of S 11. (It should not be assumed that the game was saved by the same interpreter.)

32

6.1.3

A "restart” is similar: the entire state is restored from the original story file, and the stack is
emptied; but 'Flags 2' is preserved; and the interpreter should reset the Rst parts of the header.

6.1.4

In Versions 5 and later, an interpreter unable to save the game state into internal memory (for
"undo” purposes) must clear bit 4 of 'Flags 2' in the header.

6.2 Storage of global variables

Global variables (variable numbers $10 to $ff) are stored in a table in the Z-machine's dynamic
memory, at a byte address given in word 6 of the header. The table consists of 240 2-byte words
and the initial values of the global variables are the values initialy contained in the table. (It is
legal for a program to alter the table's contents directly in play, though not for it to change the ta-
ble's address.)

6.3 Thestack

Writing to the stack pointer (variable number $00) pushes a value onto the stack; reading from it
pulls avalue off. Stack entries are 2-byte words as usual.

6.3.1

The stack is considered as empty at the start of each routine: it is illegal to pull values from it
unless values have first been pushed on.

6.3.2

The stack is |eft empty at the end of each routine: when a return occurs, any values pushed dur-
ing the routine are thrown away.

6.3.3

Stack size has not previously been specified. The author proposes the present capacity of Zip as
a future minimum standard: let the 'usage' of a routine call be 4 plus the number of local vari-
ablesit has. During a game the total of the usages for each routine in the recursive chain of rou-
tines being called, plus the game's own stack usage, must never reach 1024.

6.4 Routinecalls

Routine calls occur in the following circumstances: when one of the call... opcodes is executed;
in Versions 4 and later, when timed keyboard input is being monitored; in Versions 5 and later,
when a sound effect finishes; in Version 6, when the game begins (to call the "main” routine); in
Version 6, when a "newline interrupt” occurs.

33

6.4.1

A routine cal may have any number of arguments, from O to 3 (in Versions 1 to 4) or 0 to 7
(Versions 5 and later). All routines return a value (though sometimes this value is thrown away
afterward: for example by opcodes in the form call_vn*).

6.4.2

Routine calls preserve local variables and the stack (except when the return value is stored in a
local variable or onto the top of the stack).

6.4.3

A routine call to packed address O is legal: it does nothing and returns false (0). Otherwise it is
illegal to call a packed address where no routine is present.

6.4.4

When aroutine is called, its local variables are created with initial values taken from the routine
header (Versions 1 to 4) or with initial value O (Versions 5 and later). Next, the arguments are
written into the local variables (argument 1 into local 1 and so on).

6.4.4.1

It is legal for there to be more arguments than local variables (any spare arguments are thrown
away) or for there to be fewer.

6.4.5

The return value of aroutine can be any Z-machine number. Returning ‘false’ means returning O;
returning 'true’ means returning 1.

6.5 Stack frames

A "stack frame" is an index to the routine call state (that is, the call-stack of return addresses
from routines currently running, and values of local variables within them). This index is a Z-
machine number. The interpreter must be able to produce the current value and to set a value
further down the call-stack than the current one, effectively throwing away its recent history (see
catch and throw).

6.6 User stacks (V6)

In Version 6, the Z-machine understands a third kind of stack: a "user stack", which is a table of
words in dynamic memory. The first word in this table always holds the number of spare slots on
the stack (so the initial value is the capacity of the stack). The Z-machine makes no check on
stack under-flow (i.e., pulling more values than were pushed) which would over-run the length
of the table if the program allowed it to happen.

Remarks

Some interpreters store the whole of dynamic memory to disc as part of their saved game files,
which can make them as much as 45K or so long. A player making a serious attack on a game
may end up wasting a whole megabyte, more than convenient without a hard disc. A technique
invented by Bryan Scattergood, taken up by most modern interpreters, greatly reduces file size
by only saving bytes of dynamic memory which differ from the initial state of the game.

It is unspecified how an interpreter should decide whether a saved game file belongs to the game
currently being played. It isnormal to insist that the release numbers, serial codes and checksums
all match. The Pinfocom interpreter deliberately checks only the release number, so that saved
games can be exchanged between different editions of 'Seastalker' (presumably compiled to han-
dle the sonarscope differently).

These issues are taken up in great detail in Martin Frost's Quetzal standard for saved game files,
created to allow different interpreters to exchange saved games. This Standard doesn't require
compliance with Quetzal, but interpreter writers are urged to consider it: it can only help authors
if players can send them saved games where bugs seem to have appeared.

The stack is stored in the interpreter's own memory, not anywhere in the Z-machine. The game
program has no direct access to the stack memory or stack pointer; on some implementations the
game's main stack is also used to store the routine call state (i.e. the game stack and the call-stack
are the same) but this need not be true.

The stack size specification guarantees in particular that if the game itself never uses more than
32 stack entries at once then it can have a recursive depth of at least 90 routine calls. The author
believes that old Infocom games will all run with a stack size of 512 words.

Note that the "state of play" does not include numerous input/output settings (the current win-
dow, cursor position, splitness or otherwise, which streams are selected, etc.): neither does it in-
clude the state of the random-number generator. (Games with elaborate status lines must redraw
them after arestore has taken place.)

Zip provides "undo" but most versions of the ITF interpreter do not (and save_undo returns O,
unfortunately). This is probably its greatest failing. Some Infocom-written interpreters will only
provide "undo” to a game which has bit 4 of 'Flags 2' set: but Inform 5.5 doesn't set this bit, so
modern interpreters should be more generous.

35

7. Output streams and file handling

7.1 Output streams

At any given time text is being output through a selection of "output streams’ (possibly none,
possibly several at once).

711

Two output streams are common to all Versions: number 1 (the screen) and 2 (the game tran-
script, usualy printed to a printer or afile).

7111

In Versions 1 to 5, the player's input to the read opcode should be echoed to output streams 1
and 2 (if stream 2 is active), so that text typed in appears in any transcript. In Version 6 input
should be sent only to stream 1 and it is the game's responsibility to write to the transcript.

7.11.2

In Infocom’'s Version 4 game 'A Mind Forever Voyaging', which anticipated a printer rather than
afile to receive the transcript, stream 2 is turned off and on again several times in quick succes-
sion. Thus if an interpreter decides where to send the transcript by asking the player for a file-
name, this question should only be asked once per game session, not every time stream 2 is se-
lected.

7.1.2

Versions 3 and later supply these and two other output streams, numbered 3 (Z-machine mem-
ory) and 4 (a script file of the player's whole commands and of individual keypresses as read by
read_char).

7121

Output stream 3 writes to atable in dynamic memory. When the stream is selected, the table may
have any contents (even the initial 'size’ word will be ignored by the interpreter). While the
stream is selected, the table's contents are unspecified (and a game cannot safely read or write to
it). When the stream is deselected, the initial word of the table holds the number of characters
printed and subsequent bytes hold those characters. Similarly, in Version 6, the total width of
printing (in units) will then be stored in the word at $30 in the header. (It is the programmer's re-
sponsibility to make the table large enough: the interpreter performs no overflow checking.)

71211

*** |t is possible for stream 3 to be selected while it is aready on. If this happens, the previous
table address is remembered and the previous table is resumed when the new one is finished.
This nesting can reach a depth of up to 16: if stream 3 is opened for a seventeenth time, the in-
terpreter should halt with an error message.

36

7122

Output stream 3 is unusual in that, while it is selected, no text is sent to any other output streams
which are selected. (However, they remain selected.)

71221

Newlines are written to output stream 3 as ZSCII 13. (A game should never print_char the
value 10, or any other value which is undefined as a ZSCl1 output code.)

7123

Output stream 4 is unusua in that, when it is selected, the only text printed to it is that of the
player's commands and keypresses (as read by read_char). (Each command is written, in one
go, when it has been finished: a command which has been timed-out, or has been terminated by a
code in the terminating character codes table, is not written. Mistypes and uses of 'delete’ are not
written.)

7.2 Buffering

On output streams 1 and 2 (only), text printing may be "buffered" in that new-lines are automati-
cally printed to ensure that no word (of length less than the width of the screen) spreads across
two lines. (This process is sometimes called "word-wrapping”.)

721

In Versions 1 to 3, buffering is always on. In Versions 4 and later it is on by default (at the start
of agame) and a game can switch it on or off using the buffer_mode opcode.

7.2.2

In Version 6, each of the eight windows has its own "buffering flag". In Versions 3 to 5, the
buffer_mode applies only to the lower window, and buffering never happens in the upper win-
dow.

7.3 Selection (V1and V2)

In Versions 1 and 2, output stream 1 is always selected and stream 2 can be selected or dese-
lected by the game, by setting or clearing bit O of ‘Flags 2'.

7.4 Selection (later versions)

In Versions 3 and later, all four output streams can be selected or deselected using the out-
put_stream opcode. In addition, stream 2 can be selected or deselected by setting or clearing bit
0 of 'FHags 2'. Whichever method is used, the interpreter must ensure that this flag holds the cur-
rent status of stream 2. ('A Mind Forever Voyaging' requiresthis.)

37

7.5 Dealing with Unicode or invalid characters

*** Because of the print_unicode opcode, it is possible for arbitrary Unicode characters to be
sent to the output streams: that is, for characters which are not in the ZSCII set at all, even in the
"extra characters' range.

75.1
See S3.8.5.4 for rules on printing Unicode to stream 1.

7.5.2

Interpreters are free to use any representation of non-ASCII Unicode characters in stream 2. For
example, they might print "[1a05]" to signify Unicode character $1a05; or they might be config-
urable to write transcript files which conform to any chosen 1SO 8859 set.

7.5.3

When printed to stream 3, Unicode characters should be converted to ZSCII if possible. If thisis
not possible, a question mark should be printed to stream 3.

754
Non-ZSClI characters never need to be printed to stream 4.

7.6 File handling

*** In Versions 5 and later, the Z-machine has the ability to load and save files (using optional
operands with the save and restor e opcodes: these operands were not used in Infocom's Version
5 games, but | wish to specify them asin Version 5 anyway).

7.6.1

*** Filenames have the following format (approximately the MS-DOS 8.3 rule): one to eight al-
phanumeric characters, a full stop and zero to three alphanumeric characters (the "file exten-
sion™).

7.6.1.1

The interpreter must convert al filenames to upper case before use. If no full stop is given,
".AUX" should be appended.

7.6.1.2

Games should avoid the extensions ".INF", ".H", ".Z" followed by a humber or ".SAV": other-
wise they may be in danger of erasing their own object code, source code or saved game files.

38

7.6.2

*** Saved files are not associated with any particular session of a game. They are not part of the
"state of play"”.

7.6.3
*** A game may depend on having up to 32 auxiliary files (with different names).

764

File-handling errors such as "disc corrupt” and "disc full" should be reported directly to the
player by the interpreter. The error "file not found" should only cause a failure return code from
restore.

Remarks
The I TF interpreter incorrectly applies buffering when printing to the upper window.

Note that the requirement 7.1.2.1.1, that usages of stream 3 can be 'nested’, is new in Standard
1.0. Thisis potentially important for Inform games, as stream 3 is often used to examine text be-
fore printing, for instance to choose between the articles "a" and "an" in front of an object name.
But the process of printing an object name may itself require a usage of stream 3, and so on.

An ambiguous point about output stream 4 is whether it should contain the answers to interpreter
guestions like "what file name should your saved game have?': it can actually be quite useful to
be able to include such answers in test script files. (When running along script, | often save the
game at several places during it, in order to save time in re-running passages.)

An interpreter should be able to write time delays (for timed input), accented characters or mouse
clicksinto stream 4 (i.e., to a script file). One possible style to record this information might be:

take | anp an ordi nary conmmand

turn it on.[154] command, full stop, then keypad 9
(which m ght abbreviate for NE)

| ook unde[0] timed out input

| ook under the rock t he sane input continuing

[254][10]] 6] nmouse-click at (10, 6)

A typical auxiliary file might be one containing the player's preferred choices. This would be
created when he first changed any of the default settings, and loaded (if present) whenever the
game started up.

39

8. The screen model

8.1 Fonts

Text may be printed in any font of the interpreter's choice, variable- or fixed-pitch: except that
when bit 1 of 'Flags 2' in the header is set, or when the text style has been set to Fixed Pitch, then
afixed-pitch font must be used.

811

In Version 5, the height and width of the current font (in units (see below)) should be written to
bytes $27 and $26 of the header, respectively. In Version 6, these bytes are the other way round
(height in $27, width in $26). The width of afont is defined as the width of its'0' character.

8.12

An interpreter should ideally provide 4 fonts, with ID numbers as follows:

1. the nornal font

2: a picture font

3: a character graphics font

4: a Courier-style font with fixed pitch

(In addition, font ID 0 means "the previous font".) Ideally all text styles should be available for
each font (for instance, Courier bold should be obtainable) except that font 3 need only be avail-
able in Roman and Reverse Video. Each font should provide characters for character codes 32 to
126 (plus character codes for any accented characters with codes greater than 127 which are be-
ing implemented as single accented |etters on-screen).

8.13

***% A game must not use fonts other than 1 unless allowed to by the interpreter: see the set_font
opcode for how to give or refuse permission. (This paragraph is marked *** because existing In-
focom games determined the availability of font 3 for '‘Beyond Zork' in a complicated and unsat-
isfactory way: see S 16.)

8131

*** |tislegal for a game to change font at any time, including halfway through the printing of a
word. (This might be needed to introduce exotic foreign accents in the future.)

8.14

The specification of the "picture font" is unknown (conjecturally, it was intended to provide pic-
tures before Version 6 was properly developed). Interpreters need not implement it.

8.15
The specification of the character graphics font isgivenin S 16.

40

8.151

In Version 5 (only), an interpreter which cannot provide the character graphics font should clear
bit 3 of 'Flags 2' in the header.

8.2 Statusline

In Versions 1 to 3, a status line should be printed by the interpreter, as follows. In Version 3, it
must set bit 4 of 'Flags 1' in the header if it is unable to produce a status line.

821

In Versions 1 and 2, all games are "score games'. In Version 3, if bit 1 of 'Flags 1' is clear then
the gameis a"score game"; if it is set, then the game is a"time game”.

8.2.2

The short name of the object whose number isin the first global variable should be printed on the
left hand side of the line.

8221

Whenever the status line is being printed the first global must contain a valid object number. (It
would be useful if interpreters could protect themselves in case the game accidentally violates
this requirement.)

8.2.2.2

If the object's short name exceeds the available room on the status line, the author suggests that
an interpreter should break it at the last space and append an ellipsis "...". There is no guaranteed
maximum length for location names but an interpreter should expect names of length up to at
least 49 characters.

8.2.3
If there is room, the right hand side of the status line should display:

8231

For "score games': the score and number of turns, held in the values of the second and third
global variables respectively. The score may be assumed to be in the range -99 to 999 inclusive,
and the turn number in the range O to 9999.

8232

For "time games": the time, in the form hours:minutes (held in the second and third globals).
The time may be given on a 24-hour clock or the number of hours may be reduced modulo 12
(but if so, "AM" or "PM" should be appended). Either way the player should be able to see the
difference between 4am and 4pm, for example. The hours global may be assumed to be in the
range 0 to 23 and the minutes global in the range 0 to 59.

41

824

The status line is updated in exactly two circumstances. when a show_status opcode is executed,
and just before the keyboard is read by read. (It is not displayed when the game begins.)

8.3 Text colours

Under Versions 5 and later, text printing has a current foreground and background colour. In
Version 6, each window has its own pair. (Note that a Version 6 interpreter going under the
Amiga interpreter number must use the same pair of colours for al windows. If either is
changed, then the interpreter must change the colour of all text on the screen to match. This
simulates the Amiga hardware, which used two logical colours for text and switched palette to
change their physical colour.)

8.3.1

The following codes are used to refer to colours:
-1 = the colour of the pixel under the cursor (if any)
0 = the current setting of this colour
1 = the default setting of this col our
2 = Dblack 3 =red 4 = green 5 = yel | ow
6 = blue 7 = magent a 8 = cyan 9 = white
10 = darkish grey (MSDCS interpreter nunber)
10 = light grey (Aniga interpreter nunber)
11 = nmediumgrey (ditto)
12 = dark grey (ditto)

Colours 10, 11, 12 and -1 are available only in Version 6. In Version 6 the pictures in some
graphics files use colours beyond the above: if so the result of "the colour under the cursor” is
permitted to be stored with value 16 or greater.

8.3.2

If the interpreter cannot produce colours, it should clear bit O of 'Flags 1' in the header. In Ver-
sion 6 it should write colours 2 and 9 (black and white), either way round, into the default back-
ground and foreground colours in bytes $2c and $2d of the header.

833

If the interpreter can produce colours, it should set bit O of 'Flags 1' in the header, and write its
default background and foreground colours into bytes $2c and $2d of the header.

834

If a game wishes to use colours, it should have bit 6 in 'Flags 2' set in its story file. (However, an
interpreter should not rule out the use of colours just because this has not been done.)

8.4 Screen dimensions

The screen should ideally be at least 60 characters wide by 14 lines deep. (Old Apple Il inter-
preters had a 40 character width and some modern laptop ones have a 9 line height, but imple-

42

mentors should seek to avoid these extremes if possible.) The interpreter may change the exact
dimensions whenever it likes but must write the current height (in lines) and width (in charac-
ters) into bytes $20 and $21 in the header.

84.1

The interpreter should use the screen height for calculating when to pause and print "[MORE]".
A screen height of 255 lines means "infinite height”, in which case the interpreter should never
stop printing for a "[MORE]" prompt. (In case, say, the screen is actually a teletype printer, or
has very good "scrollback™.)

8.4.2

Screen dimensions are measured in notional "units'. In Versions 1 to 4, one unit is simply the
height or width of one character. In Version 5 and later, the interpreter is free to implement units
as anything from character sizes down to individual pixels.

8.4.3

In Version 5 and later, the screen's width and height in units should be written to the words at
$22 and $24.

8.5 Screen modd (V1,V2)
The screen mode! for Versions 1 and 2 is as follows:

85.1
The screen can only be printed to (like ateletype) and there is no control of the cursor.

8.5.2

At the start of a game, the screen should be cleared and the text cursor placed at the bottom left
(so that text scrolls upwards as the game gets under way).

8.6 Screen model (V3)
The screen model for Version 3 is as follows:

8.6.1

The screen is divided into a lower and an upper window and at any given time one of these is
selected. (Initialy it is the lower window.) The game uses the set_window opcode to select one
of the two. Each window has its own cursor position at which text is printed. Operations in the
upper window do not move the cursor of the lower. Whenever the upper window is selected, its
cursor position is reset to the top left. Selecting, or re-sizing, the upper window does not change
the screen's appearance.

43

8.6.1.1

The upper window has variable height (of n lines) and the same width as the screen. This should
be displayed on the n lines of the screen below the top one (which continues to hold the status
line). Initialy the upper window has height 0. When the lower window is selected, the game can
split off an upper window of any chosen size by using the split_window opcode.

8.6.11.1
Printing onto the upper window overlays whatever text is already there.

8.6.1.1.2
When a screen split takes place in Version 3, the upper window is cleared.

8.6.1.2

An interpreter need not provide the upper window at al. If it is going to do so, it should set bit 5
of 'Flags 1' in the header to signal this to the game. It is only legal for a game to use set_window
or split_window if this bit has been set.

8.6.1.3

Following a "restore" of the game, the interpreter should automatically collapse the upper win-
dow to size 0.

8.6.2

When text reaches the bottom right of the lower window, it should be scrolled upwards. The up-
per window should never be scrolled: it is legal for a character to be printed on the bottom right
position of the upper window (but the position of the cursor after this operation is undefined: the
author suggests that it stay put).

8.6.3

At the start of a game, the screen should be cleared and the text cursor placed at the bottom left
(so that text scrolls upwards as the game gets under way).

8.7 Screen model (V4, V5)
The screen model for Versions 4 and later, except Version 6, is as follows:

8.7.1

Text can be printed in five different styles (modelled on the VT100 design of terminal). These
are: Roman (the default), Bold, Italic, Reverse Video (usually printed with foreground and back-
ground colours reversed) and Fixed Pitch. The specification does not require the interpreter to be
able to display more than one of these at once (e.g. to combine italic and bold), and most inter-
preters can't. If the interpreter is going to allow certain combinations, then note that changing
back to Roman should turn off all the text styles currently active.

44

8711

An interpreter need not provide Bold or Italic (even for font 1) and is free to interpret them
broadly. (For example, rendering bold-face by changing the colour, or rendering italic with un-
derlining.)

8.7.1.2
It islegal to change text style at any point, including in the middle of aword being printed.

8.7.2

There are two "windows", called "upper" and "lower": at any given time one of these two is se-
lected. (Initialy it is the lower window.) The game uses the set_window opcode to select one of
the two. Each window has its own cursor position at which text is printed. Operations in the up-
per window do not move the cursor of the lower. Whenever the upper window is selected, its
cursor position is reset to the top |eft.

8.7.21

The upper window has variable height (of n lines) and the same width as the screen. (It is usual
for interpreters to print the upper window on the top n lines of the screen, overlaying any text
which is aready there, having been printed in the lower window some time ago.) Initially the
upper window has height 0. When the lower window is selected, the game can split off an upper
window of any chosen size by using the split_window opcode.

87211

It is unclear exactly what split_window should do if the upper window is currently selected. The
author suggests that it should work as usual, leaving the cursor where it isif the cursor is till in-
side the new upper window, and otherwise moving the cursor back to the top left. (Thisis analo-
gousto the Version 6 practice.)

8.7.2.2

In Version 4, the lower window's cursor is aways on the bottom screen line. In Version 5 it can
be at any line which is not underneath the upper window. If a split takes place which would
cause the upper window to swallow the lower window's cursor position, the interpreter should
move the lower window's cursor down to the line just below the upper window's new size.

8.7.2.3

When the upper window is selected, its cursor position can be moved with set_cursor. This po-
sition is given in characters in the form (row, column), with (1,1) at the top left. The opcode has
no effect when the lower window is selected. It isillegal to move the cursor outside the current
size of the upper window.

8.7.24

An interpreter should use a fixed-pitch font when printing on the upper window.
45

8.7.2.5

In Versions 3 to 5, text buffering is never active in the upper window (even if a game begins
printing there without having turned it off).

8.7.3
Clearing regions of the screen:

8.73.1

When text reaches the bottom right of the lower window, it should be scrolled upwards. (When
the text style is Reverse Video the new blank line should not have reversed colours.) The upper
window should never be scrolled: it is legal for a character to be printed on the bottom right po-
sition of the upper window (but the position of the cursor after this operation is undefined: the
author suggests that it stay put).

8.7.3.2

Using the opcode erase window, the specified window can be cleared to background colour.
(Even if the text styleis Reverse Video the new blank space should not have reversed colours.)

87321

In Versions 5 and later, the cursor for the window being erased should be moved to the top left.
In Version 4, the lower window's cursor moves to its bottom left, while the upper window's cur-
sor moves to top left.

8.7.3.3

Erasing window -1 clears the whole screen to the background colour of the lower screen, col-
lapses the upper window to height O, moves the cursor of the lower screen to bottom left (in Ver-
sion 4) or top left (in Versions 5 and later) and selects the lower screen. The same operation
should happen at the start of a game.

8.7.34

Using erase line in the upper window should erase the current line from the cursor position to
the right-hand edge, clearing it to background colour. (Even if the text style is Reverse Video the
new blank space should not have reversed colours.)

8.8 Screen model (V6)
The screen model for Version 6 is as follows:

881

The display is an array of pixels. Coordinates are usually given (in units) in the form (y,x), with
(1,2) in the top left.

46

8.8.2

If the interpreter thinks the status line should be redrawn (e.g. because a menu window has been
clicked over it), it may set bit 2 of 'Flags 2'. The game is expected to notice, take action and clear
the bit. (However, a more efficient interpreter would cache the status line and handle redraws it-
self.)

8.8.3

There are eight "windows", numbered O to 7. The code -3 is used as a window number to mean
"the currently selected window". This selection can be changed with the set_window opcode.
Windows are invisible and usually lie on top of each other. All text and graphics plotting is a-
ways clipped to the current window, and anything showing through is plotted onto the screen.
Subsequent movements of the window do not move what was printed and there is no sense in
which characters or graphics 'belong’ to any particular window once printed. Each window has a
position (in units), asize (in units), a cursor position within it (in units, relative to its own origin),
anumber of flags called "attributes’ and a number of variables called "properties’.

88.3.1
There are four attributes, numbered as follows:
0: wrapping

1. scrolling
2: text copied to output stream 2 (the transcript, if selected)
3: buffered printing

Each can be turned on or off, using the window_style opcode.

88311

"Wrapping" is the continuation of printed text from one line to the next. Text running up to the
right margin will continue from the left margin of the following line. If "wrapping" is off then
characters will be printed until no more can be fitted in without hitting the right margin, at which
point the cursor will move to the right margin and stay there, so that any further text will be ig-
nored.

88312

"Buffered printing" means that text to be printed in the window is temporarily stored in a buffer
and only flushed onto the screen at intervals convenient for the interpreter.

883121

"Buffered printing” has two practical effects: firstly it causes a delay before printed text actually
appears.

8.8.3.1.2.2

Secondly it affects the way "wrapping” is done. If "buffered printing" is on, then text is wrapped
after the last word which could fit on aline. If not, then text is wrapped after the last character
that could fit.

47

Example: suppose the text "Here is an abacus' is printed in a narrow window. The appearance
(after the buffer has been flushed, if there is buffered printing) might be:

| ... margins....|
W appi ng on buffering on Here is an
abacus”
of f buffering on Here is an aba”
wWr appi ng on buffering off Here is an aba
cus”
of f buffering off Here is an aba®

where the caret denotes the final position of the cursor. (Games often alter "wrapping”: it would
normally be on for awindow holding running text but off for a status-line window, which is why
window O has "wrapping” on by default but all other windows have "wrapping" off by default.
On the other hand all windows have "buffered printing” on by default and games only alter this
in rare circumstances to avoid delays in the appearance of individual printed characters.)

8.8.3.2

There are 16 properties, numbered as follows:
0 vy coordinate 6 left margin size 12 font nunber
1 x coordinate 7 right margin size 13 font size
2 y size 8 new i ne interrupt routine 14 attributes
3 Xx size 9 i nterrupt countdown 15 1line count
4 'y cursor 10 text style
5 x cursor 11 colour data

Each property is a standard Z-machine number and is readable with get_wind_prop and write-
able with put_wind_prop. However, a game should only use put_wind_prop to set the newline
interrupt routine, the interrupt countdown and the line count: everything else is either set by the
interpreter or by specialised opcodes (such as set_font).

88321

If awindow has character wrapping, then text is clipped to stay inside the left and right margins.
After a new-line, the cursor moves to the left margin on the next line. Margins can be set with
set_margins but this should only be done just after a newline or just after the window has been
selected. (These values are margin sizes in pixels, and are by default 0.)

8.8.3.2.2

If the interrupt countdown is set to a non-zero value (which by default it is not), then the line
count is decremented on each new-line, and when it hits zero the routine whose packed address
is stored in the "newline interrupt routine” property is called before text printing resumes. (This
routine may, for example, meddle with margins to roll text around a crinkly-shaped picture.) The
interrupt routine should not attempt to print anything.

883221

Because of an Infocom bug, if the interpreter number is 6 (for MSDOS) and the story file is
'Zork Zero' release 393.890714, but in no other case, the interpreter must do the following in-

48

stead: (1) move to the new line, (2) put the cursor at the current left margin, (3) call the interrupt
routine (if it's time to do s0). Thisis the least bad way to get around a basic inconsistency in ex-
isting Infocom story files and interpreters.

8.8.3.222

Note that the set_margins opcode, which is often used by newline interrupt routines (to adjust
the shape of a margin as it flows past a picture), automatically moves the cursor if the change in
margins would leave the cursor outside them. The effect will depend, unfortunately, on which
sequence of events above takes place.

8.8.3.2.2.3
A line count is never decremented below -999.

8.8.3.23

The text style is set just as in Version 4, using set_text_style (which sets that for the current
window). The property holds the operand of that instruction (e.g. 4 for italic).

88324

The foreground colour is stored in the lower byte of the colour data property, the background
colour in the upper byte.

8.8.3.25

The font height (in pixels) is stored in the upper byte of the font size property, the font width (in
pixels) in the lower byte.

8.8.3.2.6

The interpreter should use the line count to see when it should print "[MORE]". A line count of -
999 means "never print [MORE]". (Version 6 games often set line counts to manipulate when
"[MORE]" is printed.)

8.8.3.2.7

If an attempt is made by the game to read the cursor position at a time when text is held un-
printed in a buffer, then this text should be flushed first, to ensure that the cursor position is accu-
rate before being read.

8.8.3.3

All eight windows begin at (1,1). Window O occupies the whole screen and is initially selected.
Window 1 is as wide as the screen but has zero height. Windows 2 to 7 have zero width and
height. Window O initially has attribute 1 off and 2, 3 and 4 on (scrolling, copy to printer tran-
script, buffering). Windows 1 to 7 initially have attribute 4 (buffering) on, and the other attrib-
utes off.

49

8.8.34

A window can be moved with move window and resized with window_size. If the window size
isreduced so that its cursor lies outside it, the cursor should be reset to the left margin on the top
line.

8.8.35

Each window remembers its own cursor position (relative to its own coordinates, so that the po-
sition (1,1) is at its top left). These can be changed using set_cursor (and it is legal to move the
cursor for an unselected window). It isillegal to move the cursor outside the current window.

8.8.3.6

Each window can be scrolled vertically (up or down) any number of pixels, using the
scroll_window opcode.

884

To some extent windows 0 and 1 mimic the behaviour of the lower and upper windows in the
Version 4 screen model:

8841

The split_screen opcode tiles windows 0 and 1 together to fill the screen, so that window 1 has
the given height and is placed at the top left, while window O is placed just below it (with its
height suitably shortened, possibly making it disappear altogether if window 1 occupies the
whole screen).

8.8.4.2

An "unsplit" (that is, a split_screen 0) takes place when the entire screen is cleared with
erase window -1, if a"split" has previously occurred (meaning that windows 0 and 1 have been
Set up as above).

8.85
Screen clearing operations:

8851

Erasing a picture is like drawing it (see below), except that the space where it would appear is
painted over with background colour instead.

8852

The current line can be erased using erase_line, either al the way to the right margin or by any
positive number of pixels in that direction. The space is painted over with background colour
(even if the current text style is Reverse Video).

50

8.8.5.3

Each window can be erased using erase_window, erasing to background colour (even if the cur-
rent text style is Reverse Video).

88531

Erasing window number -1 erases the entire screen to the background colour of window O,
unsplits windows 0 and 1 (see S 8.7.3.3 above) and selects window O.

8.8.5.3.2

Erasing window -2 erases the entire screen to the current background colour. (It doesn't perform
erase window for al the individual windows, and it doesn't change any window attributes or
cursor positions.)

8.8.6

Pictures may accompany the game. They are not stored in the story file (or the Z-machine) itself,
and the interpreter is ssimply expected to know where to find them.

8.8.6.1

Pictures are numbered from 1 upwards (not necessarily contiguously). They can be "drawn" or
"erased" (using draw_picture and erase picture). Before attempting to do so, a game may ask
the interpreter about the picture (using picture_data): this allows the interpreter to signal that the
picture in question is unavailable, or to specify its height and width.

8.8.6.2

The game may, if it wishes, use the picture_table opcode to give the interpreter advance warn-
ing that a group of pictures will soon be needed (for instance, a collection of icons making up a
control panel). The interpreter may want to load these pictures off disc and into a memory cache.

Remarks
See S 16 for comment on how 'Beyond Zork' uses fonts.

Some interpreters print the status line when they begin running a Version 3 game, but thisisin-
correct. (It means that a small game printing text and then quitting cannot be run unless it in-
cludes an object.) The author's preferred status line formats are:

Hal | of M sts 80/ 733
Li ncol n Menori al 12: 03 PM

Thus the score/turns block aways fits in 3+1+4=8 characters and the time in 2+1+2+1+2=8
characters. (Games needing more exotic time lines, for example, should not be written in Version
3)

51

The only existing Version 3 game to use an upper window is 'Seastalker' (for its sonarscope dis-
play).
Some ports of I TF apply buffering (i.e. word-wrapping) and scrolling to the upper window, with

unfortunate consequences. This is why the standard Inform status line is one character short of
the width of the screen.

The original Infocom files seldom use erase window, except with window -1 (for instance
‘Trinity' only usesit in thisform). I TF does not implement it in any other case.

The Version 5 re-releases of older games make use of consecutive set_text_style instructions to
attempt to combine boldface reverse video (in the hints system).

None of Infocom's Version 4 or 5 files use erase line at al, and I TF implements it badly (with
unpredictable behaviour in Reverse Video text style). (It's interesting to note that the Version 5
edition of 'Zork I' - one of the earliest Version 5 files -- blanks out lines by looking up the screen
width and printing that many spaces.)

It's recommended that a Version 5 interpreter always use units to correspond to characters. that
is, characters occupy 1×1 units. 'Beyond Zork' was written in the expectation that it could
be using either 1x1 or 8x8, and contains correct code to calculate screen positions whatever units
are used. (Infocom's Version 5 interpreter for MSDOS could either run in atext mode, 1x1, or a
graphics mode, 8x8.) However, the German translation of 'Zork I' contains incorrect code to cal-
culate screen positions unless 1x1 units are used.

Note that a minor bug in Zip writes bytes $22 to $25 in the header as four values, giving the
screen dimensions in the form left, right, top, bottom: provided units are characters (i.e. provided
the font width and height are both 1) then since "left" and "top" are both 0, this bug has no effect.

Some details of the known IBM graphics files are given in Paul David Doherty's "Infocom Fact
Sheet". See also Mark Howell's program "pix2gif", which extracts pictures to GIF files. (Thisis
one of his"Ztools" programs.)

Although Version 6 graphics files are not specified here, and were released in severa different
formats by Infocom for different computers, a consensus seems to have emerged that the MCGA
pictures are the ones to adopt (files with filenames *.MG1). These are visudly identica to
Amiga pictures (whose format has been deciphered by Mark Knibbs). However, some Version 6
story files were tailored to the interpreters they would run on, and use the pictures differently ac-
cording to what they expect the pictures to be. (For instance, an Amiga-intended story file will
use one big Amiga-format picture where an MSDOS-intended story file will use several smaller
MCGA ones.)

The easiest option is to interpret only DOS-intended Version 6 story files and only MCGA pic-
tures. But it may be helpful to examine the Frotz source code, as Frotz implements
draw_picture and picture_data so that Amiga and Macintosh forms of Version 6 story files can
also be used.

It is generally felt that newly-written graphical games should not imitate the old Infocom graph-
ics formats, which are very awkward to construct and have been overtaken by technology. In-
stead, the draft Blorb proposal for packaging up resources with Z-machine games calls for PNG
format graphics glued together in a fairly ssimple way. An ideal Version 6 interpreter ought to
understand both the four Infocom picture-sets and any Blorb set, thus catering for old and new
games aike.

52

The line count of -999 preventing "[MORE]" is a device used by the demonstration mode of
'Zork Zero'.

Infocom's Version 6 interpreters and story files disagree on the meaning of window attributes O
and 3 and the opcode buffer_mode, in such a way that the original specification is hard to de-
duce from the fina behaviour. If we call the three possible ways that text can appear "word
wrap", "char wrap" and "char clip":

| ...margins....|

word wrap Here is an
abacus”

char wrap Here is an aba
cus”®

char clip Here is an aba”

then Infocom's interpreters behave as follows:

Applell MSDOS Macintosh Amiga
AO off, A3 off char clip (LR) | char clip()
A0 off, A3 on char clip (LR) | char clip (LR)
A0 on, A3 off word wrap char wrap
AOon, A3on word wrap word wrap
buffer-mode off char wrap char clip (L)
buffer_mode on word wrap word wrap
Here "---" means that the interpreter ignores the given state, and the presence of L, R or both af-

ter "char clipp" indicates which of the left and right margins are respected. The Amiga behaviour
may be due to a bug and two bugs have also been found in the MSDOS implementation. Under
this standard, the appearance is as follows:

Standard
AO off, A3 off char clip (LR)
A0 off, A3 on char clip (LR)
A0 on, A3 off char wrap
AOon, A3on word wrap
buffer-mode off
buffer_mode on

Due to abug or an oversight, the V6 story files for all interpreters use buffer_mode once: to re-
move buffering while printing "Please wait..." with arow of full stops trickling out during a slow
operation. Buffering would frustrate this, but fortunately on modern computers the operation is
no longer slow and so the bug does not cause trouble.

53

9. Sound effects

9.1 Sound effects

Some games, from Version 3 onward, have sound effects attached. These are not stored in the
story files (or the Z-machine) itself, and the interpreter is ssmply expected to know where to find
them. Other games have only one sound effect, usable in a much more restricted way: a beep or
bell sound, which we shall call a"bleep".

911

In Version 6, the interpreter should set bit 5 of 'Flags 1' if it can provide sound effects beyond a
bleep.

912

In Version 5 and later, a game should have bit 7 of 'Flags 2' set in its story file if it wants to use
sound effects beyond a bleep. The interpreter should then clear this bit if it cannot oblige.

9.2 Numbering of

Sound effects are numbered upwards from 1. Number 1 is a high-pitched bleep, number 2 alow-
pitched one and effects from 3 upward are supplied by the interpreter somehow for the particular
game in question.

9.3 Volume

Sound effects (other than bleeps) can be played at any volume level from 1 to 8 (8 being loudest
of these). The volume level -1 should be implemented as "loudest possible”.

9.4 Sound playing autonymously

Bleeps are immediate and brief. Other sound effects take place in the background, while normal
operation of the Z-machine is going on. Control is via the sound_effect opcode, allowing the
game to prepare, start, stop or finish with an effect.

94.1

The game may (but need not) "prepare" a sound effect before use. This would indicate to the in-
terpreter that the game intends to use the effect soon: an interpreter might act on this information
by loading the sampled sound off disc and into a memory cache.

94.2

A sound effect (other than a bleep) can then be "stopped” or "started”. Only one sound effect is
playing at any given time, and starting a new sound effect automatically stops any current one.

943

In Versions 5 and later, a sound effect may repeat any specified number of times, or repeat for-
ever (until stopped).

94.4

Eventually, though, if it has not been stopped, it may end by itself. A routine (specified at start
time) can then be called. The intention is that this routine may implement effects such as fading
in and out, by replaying the sound effect at a different volume. (A game should not place any
important code in such aroutine.)

9.4.5

The game may, but need not, explicitly "finish with" any sound effect which is not likely to oc-
cur again for awhile: the interpreter can then throw it out of memory.

Remarks

The safest way an Inform program can try to produce a bleep is by executing @sound_effect 1.
Some ports of Zip believe that the first operand of this is the number of bleeps to make (so that
@sound_effect 2 bleeps twice), but thisis incorrect.

Several Infocom games bleep (using sound_effect with only one operand, always equal to 1 or
2). Two provided sampled sound effects but did not bleep: "The Lurking Horror' and 'Sherlock'.
Their story files contain the following usages of sound_effect:

sound_effect nunber 2 vol une (in TLH)
sound_effect nunber 2 volume/repeats function (in Sherl ock)
sound_effect 0 3

sound_ef fect nunber 3

sound_effect 0 4

except that, probably due to abug in its own code, 'TLH' can also generate

sound_effect 4 8
sound_effect 4095 2 15

A further difficulty with 'TLH' is that it assumes the interpreter is as slow as Infocom's Amiga
interpreter was: it fires off several sound effects in one game round, assuming there will be time
for it to play most of each one. To simulate this, sound_effect must be rewritten to pause some-
times:

if a new sound effect is begun while there is till one playing which was started since the last
keyboard input, then wait until that earlier one finishes one cycle before replacing it with the new
sound effect.

Infocom's MS-DOS interpreters for V4 to V6 set bit 5 of 'Flags 1' in all circumstances (i.e.,
whether or not sound effects are available). This would be incorrect behaviour for a standard in-
terpreter.

Infocom implemented sound effects differently on different machines. The format of Infocom's
shipped sound effects files has been documented by Stefan Jokisch and his notes are available

55

from ftp.gmd.de. See also Andrew Plotkin's draft Blorb format for a more modern way to make
sound effects available to newer games.

56

10. I nput streams and devices

10.1 Keyboard only in V1
In Versions 1 and 2, the player's commands can only be drawn from the keyboard.

10.2 Input streams

In Versions 3 and later, the player's keypresses are drawn from the current "input stream”. There
are two input streams. numbered 0O (the keyboard) and 1 (a file containing commands). Other in-
puts (mouse clicks or menu selections), if available, are also implemented as keypresses (see
below).

10.2.1
The format of afile containing commands must be the same as that written in output stream 4.

10.2.2

The game can change the current input stream itself, using the opcode input_stream. It has no
way of finding out which input stream is currently in use. An interpreter is free to change the in-
put stream whenever it likes (e.g. at the player's request) or, indeed, to run the entire game under
input stream 1 (for testing purposes).

10.2.3

When input stream 1 is first selected, the interpreter may use any method of choosing a file name
for the file of commands. (Good practice is to use the same conventions as when choosing afile-
name for output to stream 4.)

10.2.4

When the the current stream is stream 1, the interpreter should not hold up long passages of text
(by printing "[MORE]" and waiting for a keypress, for instance).

10.3 Mouse support
Mouse support is optional but can be provided in Versions 5 and later.

10.3.1

In a game which wishes to use the mouse, bit 5 of 'Flags 2' in the header should be set in the
story file. If it wishes to read the mouse position after clicks, it must provide at least the first two
words of a header extension table. (Note that Inform 6.12 and later always provide a header ex-
tension table at least this large, but Inform 6.11 and earlier never provide an extension table at
al.)

57

10.3.1.1

If the interpreter cannot offer mouse support, then it should clear bit 5 of 'Flags 2' to signal thisto
the game.

10.3.2

Whenever amouse click takes place (and provided the header extension table exists and contains
at least 2 words) the interpreter should update the coordinates as follows:

Word 1: x coordinate where click took place
Word 2: y coordinate where click took place

10.3.3

The mouse is presumed to have between 0 and 16 buttons. The state of these buttons can be read
by the read_mouse opcode in Version 6. Otherwise, mouse clicks are treated as keyboard input
codes (see below).

10.3.4

In Version 6, the mouse can either be free or constrained to one of the 8 windows: if so, clicks
outside the 'mouse window' must be ignored, and the interpreter is at liberty to confine the
mouse's movement to the boundary of its window.

10.4 Menu support
Menu support can optionally be provided in Version 6.

104.1

In a game which wishes to use menus, bit 8 of 'Flags 2' in the header should be set in the story
file.

104.1.1

If the interpreter cannot offer menu support, then it should clear bit 8 of 'Flags 2' to signal thisto
the game.

10.4.2

Menus are numbered from O upwards. O, 1 and 2 are reserved for the interpreter to manage (this
system has only been implemented on the Macintosh, wherein 0 is the Apple menu, 1 the File
menu and 2 the Edit menu). Menus numbered 3 and upwards can be created or removed with the
make_menu opcode.

104.3

Menu selection is reported to the game as a keypress (see below). Details of what selection has
been made are read with read_mouse.

58

10.5 Terminating charactersand timed input

Whole commands are read from the input stream using the read opcode. (Note that this has two
different internal namesin Inform, sread for Versions 1 to 4 and aread subsequently.)

1051
In Versions 1 to 3, the interpreter must redisplay the status line before it begins accepting input.

10.5.2

Commands are normally terminated by a new-line (a carriage return or aline feed as appropriate
for the machine's keyboard or file format).

105.2.1

In Versions 5 and later, the game may provide a "terminating characters table" by giving its byte
address in the word at $2e in the header. This table is a zero-terminated list of input character
codes which cause aread to finish the command (in addition to new-line). Only function key
codes are permitted: these are defined as those between 129 and 154 inclusive, together with
252, 253 and 254. The special value 255 means "any function key code is terminating”.

10.5.3

*** In Versions 4 and later, an interpreter should ideally be able to time input and to cal a
(game) routine at periodic intervals: see the read opcode. If it is able to do this, it should set bit 7
of 'Flags 1' in the header.

10.6 Single keypresses

In Versions 4 and later, individual characters can be read from the current input stream, using
read_char. Again, the interpreter should ideally be able to time input and to call a (game) rou-
tine at periodic intervals. If it is able to do this, it should set bit 7 of 'Flags 1' in the header.

10.7 Reading ZSCII from the keyboard

The only characters which can be read from the keyboard are ZSCII characters defined for input
(see S3).

10.7.1
Every ZSCII character defined for input can be returned by read_char.

10.7.2

Only ZSCII characters defined for both input and output can be stored in the text buffer supplied
to the read opcode.

59

10.7.3

The "escape” code is optional: that is, an interpreter need not provide an escape key. (The Inform
library clears and quits menusif this code is returned to read_char.)

Remarks

Menus in 'Beyond Zork' define cursor up and cursor down as terminating characters, and make
use of read in the upper window.

60

11. The format of the header

111

The header table summarises those locations in the Z-machine's header which an interpreter must
deal with. (For further notes on traditional usage, see Appendix B.) "Hex" means the address, in
hexadecimal; "V" the earliest Version to which the rule is applicable; "Dyn" means that the byte
or bit may legally be changed by the game during play; "Int" means that the interpreter may
change it; "Rst" means that the interpreter must set it correctly after loading the game, after are-
store or after arestart.

Header format

Hex| V |Dyn| Int| Rst|Contents
1 Version number (1 to 6)
1|3 Flags 1 (in Versions 1 to 3):
Bit 1. Status line type: O=score/turns, 1=hours:mins
2: Story file split across two discs?
* | * |4 Status line not available?
* | * |5: Screen-splitting available?
* | * |6 Isavariable-pitch font the default?
4 Flags 1 (from Version 4):
5 * | * |Bit O: Colours available?
6 * | * | 1: Picture displaying available?
4 * | * |2: Boldface available?
4 * | * |3 Italic available?
4 * | * | 4: Fixed-space font available?
6 * | * |5: Sound effects available?
4 * | * 7. Timed keyboard input available?
4 |1 Base of high memory (byte address)
6 | 1 Initial value of program counter (byte address)
6 Packed address of initial "main” routine
8 |1 Location of dictionary (byte address)
All Location of object table (byte address)
cl|1 Location of global variables table (byte address)
E |1 Base of static memory (byte address)
10| 1 Flags 2:
1| * | * | * |Bit0O: Set when transcripting ison
3| * * | 1. Game sets to force printing in fixed-pitch font
6l « | = 2: Int sets to request status line redraw: game clears when it
complies with this.

61

5 * | * | 3 If set, game wants to use pictures
5 * | * 14 If set, game wants to use the UNDO opcodes
5 * * | 5 If set, game wants to use a mouse
5 6: If set, game wants to use colours
5 * | * | 7. If set, game wants to use sound effects
6 * * | 8: If set, game wants to use menus
(For bits 3,4,5,7 and 8, Int clears again if it cannot provide
the requested effect.)
18| 2 Location of abbreviations table (byte address)
1A | 3+ Length of file (see note)
1C | 3+ Checksum of file
1E | 4 * | * |Interpreter number
1F | 4 * | * |Interpreter version
2| 4 * | * | Screen height (lines): 255 means "infinite"
21| 4 * | * | Screen width (characters)
2|5 * | * | Screen width in units
241 5 * | * | Screen height in units
26| 5 * | * | Font width in units (defined as width of a'0")
6 * | * | Font height in units
271 5 * | * |Font height in units
6 * | * | Font width in units (defined as width of a'0")
28| 6 Routines offset (divided by 8)
2A | 6 Static strings offset (divided by 8)
2C| 5 * | * | Default background colour
2D | 5 * | * | Default foreground colour
2E| 5 Address of terminating characters table (bytes)
30| 6 * Total width in pixels of text sent to output stream 3
32| 1 * | * | Standard revision number
34| 5 Alphabet table address (bytes), or O for default
36| 5 Header extension table address (bytes)

Some early Version 3 files do not contain length and checksum data, hence the notation 3+.

1111

It isillegal for a game to ater those fields not marked as "Dyn". An interpreter is therefore free
to store values of such fieldsin its own variables.

11.1.2

The state of the transcription bit (bit O of Flags 2) can be changed directly by the game to turn
transcribing on or off (see S 7.3, S 7.4). The interpreter must also alter it if stream 2 is turned on

62

or off, to ensure that the bit always reflects the true state of transcribing. Note that the interpreter
ensures that its value survives arestart or restore.

11.1.3

Infocom used the interpreter numbers:
1 DECSyst emt 20 5 Atari ST 9 Apple Ilc
2 Apple lle 6 | BM PC 10 Apple Ilgs
3 Maci nt osh 7 Commodore 128 11 Tandy Col or
4 Aniga 8 Commodore 64

(The DECSystem-20 was Infocom's own in-house mainframe.) An interpreter should choose the
interpreter number most suitable for the machine it will run on. In Versions up to 5, the main
consideration is that the behaviour of '‘Beyond Zork' depends on the interpreter number (in terms
of its usage of the character graphics font). In Version 6, the decision is more serious, as existing
Infocom story files depend on interpreter number in many ways. moreover, some story files ex-
pect to be run only on the interpreters for a particular machine. (There are, for instance, specifi-
caly Amigaversions.)

11131

Interpreter versions are conventionally ASCII codes for upper-case letters in Versions 4 and 5
(note that Infocom's Version 6 interpreters just store numbers here).

11.1.4

*** The use of bit 7 in 'Flags 1' to signal whether timed input is available is new in this docu-
ment: see the preface.

11.1.5

*** |f an interpreter obeys Revison n.m of this document perfectly, as far as anyone knows,
then byte $32 should be written with n and byte $33 with m. If it is an earlier (non-standard) in-
terpreter, it should leave these bytes as 0.

11.1.6

The file length stored at $1a is actually divided by a constant, depending on the Version, to make
it fit into a header word. This constant is 2 for Versions 1 to 3, 4 for Versions4 to 5 or 8 for Ver-
sions 6 and later.

11.1.7

The header extension table provides potentially unlimited room for further header information. It
is atable of word entries, in which the initial word contains the number of words of data to fol-
low.

63

111.71

If the interpreter needs to read a word which is beyond the length of the extension table, or the
extension table doesn't exist at al, then the result is 0.

11.1.7.2

If the interpreter needs to write a word which is beyond the length of the extension table, or the
extension table doesn't exist at all, then the result is that nothing happens.

11.1.7.3
*** \Words in the header extension table have been allocated as follows:
Header extension for mat

Word | V| Dyn| Int | Rst |Contents
0 5 Number of further wordsin table
1 5 * X-coordinate of mouse after a click
2 5 * Y -coordinate of mouse after a click
3 5 Unicode trand ation table address (optional)
Remarks

In the Infocom period, the larger Version 3 story files would not entirely fit on a single Atari 800
disc (though they would fit on asingle Apple I, or asingle PC disc). Atari versions were there-
fore made which were identical to the normal ones except for having Flags 1 bit 2 set, and were
divided into the resident part on one disc and the rest on another. (This discovery was announced
by Stefan Jokisch on 26 August 1997 and sees the end of one of the very few Z-machine mys-
teries left when Standard 1.0 was first published.)

See the "Infocom fact sheet" for numbers and letters of the known interpreters shipped by Info-
com. Interpreter versions are conventionally the upper case letters in sequence (A, B, C, ...). At
present most ports of Zip use interpreter number 6, and most of I TF use number 2.

The unusual behaviour of '‘Beyond Zork' concerns its character graphics: see the remarksto S 16.
The Macintosh story file for 'Zork Zero' erroneously does not set the pictures bit (Flags 2, bit 3).

12. The object table

12.1 Storage

The object table is held in dynamic memory and its byte address is stored in the word at $0a in
the header. (Recall that objects have flags attached called attributes, numbered from O upward,
and variables attached called properties, numbered from 1 upward. An object need not provide
every property.)

12.2 Property defaultstable

The table begins with a block known as the property defaults table. This contains 31 words in
Versions 1 to 3 and 63 in Versions 4 and later. When the game attempts to read the value of
property n for an object which does not provide property n, the n-th entry in this table is the re-
sulting value.

12.3 Object tree

Next is the object tree. Objects are numbered consecutively from 1 upward, with object number
0 being used to mean "nothing" (though there is formally no such object). The table consists of a
list of entries, one for each object.

12.3.1
InVersions 1 to 3, there are at most 255 objects, each having a 9-byte entry as follows:

the 32 attribute flags par ent si bling child properties
---32 bits in 4 bytes--- ---3 bytes-------c-ccnana-n ---2 bytes--

parent, sibling and child must al hold valid object numbers. The properties pointer is the byte
address of the list of properties attached to the object. Attributes O to 31 are flags (at any given
time, they are either on (1) or off (0)) and are stored topmost bit first: e.g., attribute O is stored in
bit 7 of the first byte, attribute 31 is stored in bit 0 of the fourth.

12.3.2

In Version 4 and later, there are at most 65535 objects, each having a 14-byte entry as follows:
the 48 attribute flags par ent si bling child properties
---48 bits in 6 bytes--- ---3 words, i.e. 6 bytes---- ---2 bytes--

12.4 Property tables

Each object has its own property table. Each of these can be anywhere in dynamic memory (in-
deed, a game can legally change an object's properties table address in play, provided the new
address points to another valid properties table). The header of a property table is as follows:

text-length text of short name of object
----- byt e---- --some even nunber of bytes---

65

where the text-length is the number of 2-byte words making up the text, which is stored in the
usual format. (This means that an object's short name is limited to 765 Z-characters.) After the
header, the properties are listed in descending numerical order. (This order is essential and is not
amatter of convention.)

12.4.1
In Versions 1 to 3, each property is stored as a block
size byte the actual property data

---between 1 and 8 bytes--

where the size byte is arranged as 32 times the number of data bytes minus one, plus the prop-
erty number. A property list is terminated by a size byte of 0. (It is otherwise illegal for a size
byte to be a multiple of 32.)

12.4.2

In Versions 4 and later, a property block instead has the form
si ze and nunber the actual property data
--1 or 2 bytes--- --between 1 and 64 bytes--

The property number occupies the bottom 6 bits of the first size byte.

124.2.1

If the top bit of the size byte is set, then there is a second size byte. The bottom six bits contain
the property data length (counting in bytes). The seventh bit is undetermined (it is set in Info-
com'’s datafiles, and clear in Inform's).

124.2.1.1

*** A value of 0 in the bottom six bits of the second byte should be interpreted as a length of 64.
(Inform can compile such properties.)

12.4.2.2
Otherwise, if bit 6 of the size byte is set then the length is 2, and if it is clear then the length is 1.

12.5 Wedl-foundedness of thetree

It is the game's responsibility to keep the object tree well-founded: the interpreter is not required
to check. "Well-founded" means the following:

(&) An object with asibling also has a parent.
(b) An object isthe parent of exactly those objectsin the sibling list of its child.

(c) Each object can be given alevel n, such that parentless objects have level 0 and al children
of alevel n object have level n+1.

66

Remarks

The largest valid object number is not directly stored anywhere in the Z-machine. Utility pro-
grams like Infodump deduce this number by assuming that, initially, the object entries end
where the first property table begins.

Infocom'’s "'Sherlock’ contains a bug making it try to set and clear attribute 48.

The reason why the second property size byte needs to have top bit set is that the size field must
be parsable either forwards or backwards -- the Z-machine needs to be able to reconstruct the
length of a property given only the address of the first byte of its data. (There are very many (e.g.
2000) property entries in a story file, so optimising size into one byte most of the time is worth-
while.)

Bit 6 in the second byte is presently wasted, owing to a misunderstanding by Inform (which al-
ways sets the bit: Infocom had always l€eft it clear). Thisis a pity as it could be used to alow up
to 128 bytes of property data. But such a change now would cause al existing Inform-compiled
games to fail.

Inform can only construct well-founded object trees as the initial game state, but it is easy to
compile sequences of code like "move red box to blue box" followed by "move blue box to red
box" which leave the object tree in an ill-founded state. (The Inform library protects the standard
object-movement verbs against this.)

67

13. Thedictionary and lexical analysis

13.1 Storage

The dictionary table is held in static memory and its byte address is stored in the word at $08 in
the header.

13.2 Header
The table begins with a short header:

n i st of keyboard input codes entry-length nunber-of-entries
byte ------ N bytes--------cccmuon-- byt e 2-byte word

The keyboard input codes are "word-separators': typicaly (and under Inform mandatorily) these
are the ZSCII codes for full stop, comma and double-quote. Note that a space character (32)
should never be a word-separator. The "entry length" is the length of each word's entry in the
dictionary table. (It must be at least 4 in Versions 1 to 3, and at least 6 in later Versions.)

13.21

Note that the word-separators table can only contain codes which are defined in ZSCII for both
input and output.

13.3 Entries(V1to V3)

In Versions 1 to 3, each word has an entry in the form

encoded text of word byt es of data
------- 4 bytes ------ (entry length-4) bytes

The interpreter ignores the bytes of data (presumably the game's parser will use them). The en-
coded text contains 6 Z-characters (it is always padded out with Z-character 5's to make up 4
bytes. see S 3). The text may include spaces or other word-separators (though, if so, the inter-
preter will never match any text to the dictionary word in question: surprisingly, this can be use-
ful and isatrick used in the Inform library).

13.4 Entries (later versions)
In Versions 4 and later, the encoded text has 6 bytes and always contains 9 Z-characters.

13.5 Ordering

The word entries follow immediately after the dictionary header and must be given in numerical
order of the encoded text (when the encoded text is regarded as a 32 or 48-hit binary number
with most-significant byte first). It must not contain two entries with the same encoded text.

68

13.6 Lexical analysis

Lexical anaysis takes place in two circumstances. on request of a tokenise opcode (in which
case it can use any dictionary table it likes, in the format above) and during acceptance of a game
command (in which case the standard dictionary is used).

13.6.1

First, the text is broken up into words. Spaces divide up words and are otherwise ignored. Word
separators aso divide words, but each one of them is considered a word in its own right. Thus,
the erratically-spaced text "fred,go fishing" is divided into four words:

fred/ , / go / fishing

13.6.2

Each word is then encoded as a Z-machine string in dictionary form, and searched for in the dic-
tionary.

13.6.3

A "parse table" is then written, recording the number of words, the length and position of each
word and the dictionary address of each word which is recognised. For the format, see the read
opcode.

Remarks

Usually (under Inform, mandatorily) there are three bytes of data in the word entries, so that dic-
tionary entry lengths are 7 and 9 in the early and late Z-machine, respectively.

It is essential that dictionary entries are in numerical order of the bytes of encrypted text so that
interpreters can search the dictionary efficiently (e.g. by a binary-chop algorithm). Because the
lettersin AO are in aphabetical order, because the bits are ordered in the right way and because
the pad character 5 is less than the values for the letters, the numerical ordering corresponds to
normal English aphabetical order for ordinary words. (For instance "an" comes before "ana-
conda’.)

Both Infocom and Inform-compiled games contain words whose initial character is not a letter
(for instance, "#record").

Linards Ticmanis reports that some of Infocom's interpreters convert question marks to spaces
before lexical analysis. This is not Standard behaviour. (Thus, typing "What is a grue?' into
'Zork I' no longer works: the player must type "What isagrue” instead.)

69

14. Complete table of opcodes

Two-oper and opcodes 20P

St | Br|Opcode |Hex | V |Inform name and syntax
______ 0 —_— |- - -
*120P1 |1 je a b ?(label)
* |120P2 |2 jl a b ?(label)
* 120P:3 |3 jig a b ?(label)
* 120P4 |4 dec_chk (variable) val ue ?(label)
* |20P:5 |5 inc_chk (variable) value ?(label)
* 120P6 |6 jin obj1l obj2 ?(label)
* |1 20P7 |7 test bitmap flags ?(l abel)
* 20P8 |8 or ab->(result)
* 20P9 |9 and a b -> (result)
* |20P:10 |A test_attr object attribute ?(label)
20P:11 |B set _attr object attribute
20P:12 |C clear _attr object attribute
20P:13 |D store (variable) value
20P:14 |E i nsert_obj object destination
* 20P:15 |F | oadw array word-index -> (result)
* 20P:16 |10 | oadb array byte-index -> (result)
* 20P:17 |11 get _prop object property -> (result)
* 20P:18 |12 get _prop_addr object property -> (result)
* 20P:19 |13 get _next _prop object property -> (result)
* 20P:20 |14 add a b -> (result)
* 20P:21 |15 sub a b -> (result)
* 20P:22 |16 mul a b -> (result)
* 20P:23 |17 divab->(result)
* 20P:24 |18 nod a b -> (result)
* 20P:25 |19 4 |call _2s routine argl -> (result)
20P:26 1A 5 |call _2n routine argl
20P:27 |1B 5 |set_col our foreground background
6 |set_colour foreground background w ndow
20P:28 |1C | 5/6 |t hrow val ue stack-frane
______ 1D [[,
______ 1E [[,
______ 1F _— | ==

Opcode numbers 32 to 127: other forms of 20P with different types.

70

One-operand opcodes 10P

St | Br|Opcode |Hex| V |Inform nameand syntax
* |10P:128 |0 jz a ?(label)
* | * 110P:129 |1 get_sibling object -> (result) ?(label)
* | * 110P:130 |2 get _child object -> (result) ?(label)
* 10P:131 |3 get _parent object -> (result)
* 10P:132 |4 get _prop_len property-address -> (result)
10P:133 |5 inc (variabl e)
10P:134 |6 dec (vari abl e)
10P:135 |7 print_addr byte-address-of-string
* 10P:136 |8 4 |call_1s routine -> (result)
10P:137 |9 remove_obj obj ect
10P:138 A print_obj object
10P:139 B ret val ue
10P:140 C jump ?(I abel)
10P:141 D print_paddr packed-address-of-string
* 10P:142 E | oad (variable) -> (result)
* 10P:143 | F 1/4 \not value -> (result)
5 |call _1n routine

Opcode numbers 144 to 175: other forms of 10P with different types.

71

Zer o-operand opcodes 0OP

St | Br |Opcode |Hex | V |Inform name and syntax
00OP:176 |0 rtrue
00OP:177 |1 rfal se
00OP:178 |2 print (literal-string)
0OP:179 |3 print_ret (literal-string)
0OP:180 |4 1/- |nop
* |00P:181 |5 1 |save ?(label)
4 |save -> (result)
5 |[illegal]
* 100P:182 |6 1 |restore ?(label)
4 |restore -> (result)
5 |[illegal]
00OP:183 |7 restart
00OP:184 |8 ret popped
0OP:185 |9 1 |pop
* 5/6 [catch -> (result)
00OP:186 A qui t
0OP:187 |B new_|ine
00OP:188 |C 3 |show status
4 |[illegal]
* 100P:189 |D 3 |verify ?(label)
00OP:190 |E 5 |[first byte of extended opcode]
* 100P:191 |F 5/- |piracy ?(I abel)

Opcode numbers 192 to 223: VAR forms of 20P:0 to 20P: 31